Features of optical properties of high stable CdTe photovoltaic absorber layer

  • R.S. Yavorskyi Vasyl Stefanyk Precarpathian National University
Keywords: thermal evaporation method, Swanepoel method, cadmium telluride thin films, optical properties, solar cells, annealing effect

Abstract

In this paper, the technology of obtaining and effect of annealing on the morphology and optical properties of cadmium telluride thin films has been investigated. The effect of vacuum chamber modes on the growth of thin films has been studied. For obtained cadmium telluride thin films were used a modified thermal evaporation method deposited by Physical Vapor Deposition technique on a glass substrate with different thicknesses. The transmission measurements were carried with UV-ViS-NIR Spectrophotometer in the wavelength range 180-3300 nm, to analyze the optical properties as a function of wavelength. The optical band gap values were 1.49 eV for as-grown films and 1.46 eV after annealing. The refractive indexes of the samples were defined in the range of 2.6 – 2.8 for as-grown films and the indexes have increased after annealing depending on the wavelength region and film thickness. After annealing, the coalescence mode of growth is observed.

References

F.L. Luo and Ye Hong, Renewable energy systems: advanced conversion technologies and applications, Crc Press, (2016).

J. Appelbaum, Renewable and Sustainable Energy Reviews 81, 161-171 (2018) (DOI:10.1016/J.RSER.2017.07.026).

G. Wisz, L. Nykyruy, V. Yakubiv, I. Hryhoruk, R. Yavorskyi, International Journal of Renewable Energy Research (IJRER) 8(4), 2367-2384 (2018).

G. Wisz, I. Virt, P. Sagan, I. Hatala, Ł. Głowa, M. Kaczor, R. Yavorskyi, Standard Si Photovoltaic Devices Improved by ZnO Film Obtained by Pulsed Laser Deposition. Fesenko O., Yatsenko L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016, Springer Proceedings in Physics, vol 195. Springer, Cham, (2017) (DOI:10.1007/978-3-319-56422-7_24).

P. Sampaio, M. González, Renewable and Sustainable Energy Reviews. 74, 590-601 (2017) (DOI:10.1016/J.RSER.2017.02.081).

M.A. Green, Y. Hishikawa, W. Warta, et al., Prog Photovolt Res Appl. 25(7), 668–676 (2017). (DOI:10.1002/pip.2909).

A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Science 352(6283), aad4424 (2016) (DOI:10.1126/science.aad4424).

U. Gangopadhyay, S. Jana, S. Das, State of Art of Solar Photovoltaic Technology, In: Proceedings of International Conference on Solar Energy Photovoltaics 2013, 1-9 (2013) (DOI:10.1155/2013/764132).

H. Il’chuk, A. Kashuba, R. Petrus, I. Semkiv, & N. Ukrainets. Simulation the spectral dependence of the transmittance for semiconductor thin films. Physics and Chemistry of Solid State, 21(1), 57-60 (2020). (DOI:10.15330/pcss.21.1.57-60).

J. D. Major, et al., Nature 511(7509), 334-337 (2014) (DOI:10.1038/nature13435).

T. Suntola, MRS Bulletin 18(10), 45-47 (1993) (DOI:10.1557/S088376940003829X).

L. Nykyruy, Ya. Saliy, R. Yavorskyi, Ya. Yavorskyi, G. Wisz, Sz. Górny, V. Schenderovsky, 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), At Odesa, Ukraine. 01PCSI26-1-01PCSI26-5 (2017) (DOI:10.1109/NAP.2017.8190161).

Y.P. Saliy, L.I. Nykyruy, R.S. Yavorskyi, S. Adamiak, Journal of Nano- and Electronic Physics 9(5), 05016-1-05016-5 (2017) (DOI:10.21272/jnep.9(5).05016).

R.Y. Petrus, H.A. Ilchuk, A.I. Kashuba, et al. Optical-Energy Properties of CdS Thin Films Obtained by the Method of High-Frequency Magnetron Sputtering. Opt. Spectrosc. 126, 220–225 (2019). (DOI:10.1134/S0030400X19030160).

A.A. Ojo, I.M. Dharmadasa, Solar Energy 136, 10-14 (2016) (DOI:10.1016/j.solener.2016.06.067).

W. Cyrs, H. Avens, Z. Capshaw, R. Kingsbury, J. Sahmel et. al., Energy Policy 68, 524-533 (2014) (DOI:10.1016/J.ENPOL.2014.01.025).

K. Chopra, S. Das, Thin Film Solar Cells. Springer, Boston, MA, pp. 275-347 (1983) (DOI:10.1007/978-1-4899-0418-8_6).

T.M. Mazur, V.P. Makhniy, V.V. Prokopiv, M.M. Slyotov, Journal of Nano- and Electronic Physics 9(5), 05047 (2017) (DOI: 10.21272/jnep.9(5).05047).

T.M. Mazur, V.V. Prokopiv, M.M. Slyotov, M.P. Mazur, O.V. Kinzerska, O.M. Slyotov, Physics and Chemistry of Solid State 21(1), 52 (2020) (DOI: 10.15330/pcss.21.1.52-56).

V. Krishnakumar, B. Späth, C. Drost, C. Kraft, B. Siepchen, A. Delahoy, O. Zywitzki, Thin Solid Films 633, 112-117 (2017) (DOI:10.1016/j.tsf.2016.10.009).

R.S. Yavorskyi, Z.R. Zapukhlyak, Ya.S. Yavorskyi, L.I. Nykyruy, Physics and Chemistry of Solid State 18(4), 410-416 (2017) (DOI:10.15330/pcss.18.4.410-416).

S. Singh, R. Kumar, K.N. Sood, Thin Solid Films 519(3), 1078-1081 (2010) (DOI:10.1016/J.TSF.2010.08.047).

V.V. Brus, M.N. Solovan, E.V. Maistruk, I.P. Kozyarskii, P.D. Maryanchuk, K.S. Ulyanytsky, J. Rappich, Physics of the Solid State 56(10), 1947-1951 (2014) (DOI:10.1134/S1063783414100072).

S. Lalitha, S.Z. Karazhanov, P. Ravindran, S. Senthilarasu, R. Sathyamoorthy, J. Janabergenov, Physica B: Condensed Matter 387(1-2), 227-238 (2007) (DOI:10.1016/J.PHYSB.2006.04.008).

X. Wu, Solar energy 77(6), 803-814 (2004) (DOI:10.1016/J.SOLENER.2004.06.006).

F. Hosseinpanahi, D. Raoufi, K. Ranjbarghanei, B. Karimi, R. Babaei, E. Hasani, Applied Surface Science 357, 1843-1848 (2015) (DOI:10.1016/J.APSUSC.2015.09.048).

R. Kulkarni, S. Rondiya, A. Pawbake, R. Waykar, A. Jadhavar, V. Jadkar, S. Jadkar, at al., Energy Procedia 110, 188-195 (2017) (DOI:10.1016/J.EGYPRO.2017.03.126).

X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, et al., Nature Communications 9(1), 2179 (2018) (DOI:10.1038/s41467-018-04634-6).

O. Vigil-Galán, M. Courel, F. Cruz-Gandarilla, D. Seuret-Jiménez, Journal of Materials Science: Materials in Electronics 27(6), 6088-6095 (2016) (DOI:10.1007/s10854-016-4534-1).

Rugen-Hankey, S. L., et al. Solar Energy Materials and Solar Cells 136, 213-217 (2015).

G. Kartopu, L. Phillips, V. Barrioz, S. Irvine, S. Hodgson, et. al., Progress in Photovoltaics: Research and Applications 24(3), 283-291 (2016) (DOI:10.1002/pip.2668).

J. Major, Y. Proskuryakov, K. Durose, G. Zoppi, I. Forbes, Solar Energy Materials and Solar Cells 94(6), 1107–1112 (2010) (DOI:10.1016/J.SOLMAT.2010.02.034).

T. Baines, T. Shalvey, J. Major, A Comprehensive Guide to Solar Energy Systems 215-232 (2018) (DOI:10.1016/B978-0-12-811479-7.00010-)5.

M. Ruiz-Preciado, M.A. Quevedo-Lopez, A.G. Rojashernandez, et al., Digest journal of nanomaterials & biostructures (DJNB) 12(4), 1057-1067 (2017).

X. Yang, B. Liu, B. Li, J. Zhang, W. Li, L. Wu, L. Feng, Applied Surface Science 367, 480-484 (2016) (DOI:10.1016/J.APSUSC.2016.01.224).

N. Kim, C. Park, J. Park, Journal of the Korean Physical Society 62(3), 502-507 (2013) (DOI:10.3938/jkps.62.502).

S. Tadashi, M. Sunao, M. Shigekazu, Japanese Journal of Applied Physics 16(5), 807 (1977).

A. Salavei, I. Rimmaudo, F. Piccinelli, A. Romeo, Thin Solid Films535, 257-260 (2013) (DOI:10.1016/j.tsf.2012.11.121).

J.A. Venables, G.D.T. Spiller, M. Hanbucken, Reports on progress in physics 47(4), 399 (1984).

D.M. Freik, Ya.S. Yavorskyi, V.Y. Potyak, R.S. Yavorskyi, Physics and Chemistry of Solid State 13(2), 509-511 (2012).

R. Yu. Petrus, H. A. Ilchuk, A. I. Kashuba, optical properties of CdS thin films, Journal of Applied Spectroscopy. 87 (1), 35-40 (2020) (DOI:10.1007/s10812-020-00959-7).

E. Akbarnejad, M. Ghoranneviss, S. Mohajerzadeh, M.R. Hantehzadeh, E. Asl. Soleimani, Journal of Physics D: Applied Physics 49(7), 5301 (2016).

K.S. Bindra, Nikhil Suri, R. Thangaraj, Chalcogenide Let. 3(9), 133-138 (2006).

L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, Optical Materials 92, 319-329 (2019) (DOI:10.1016/j.optmat.2019.04.029).

H.H. Güllü, I. Candan, E. Coşkun, M. Parlak, Optik-International Journal for Light and Electron Optics 126(18), 1578-1583 (2015) (DOI:10.1016/J.IJLEO.2015.05.026).

M.M. Abd El-Raheem, H.M. Ali, N.M. El-Husainy, Journal of Optoelectronics and Advanced Materials 11(6), 813 – 819 (2009).

J. Tauc (ed.), Amorphous and liquid semiconductors. Springer Science & Business Media, 2012.

C.V. Ramana, R.J. Smith, O.M. Hussain, Physica status solidi (a) 199(1), 4-6 (2003) (DOI:10.1002/pssa.200309009).

R. Yavorskyi, L. Nykyruy, G. Wisz, P. Potera, S. Adamiak, Sz. Górny, Applied Nanoscience 1-10 (2018) (DOI:10.1007/s13204-018-0872-z).

R. Swanepoel, Journal of Physics E: Scientific Instruments 17(10) 896-903 (1984) (DOI:10.1088/0022-3735/17/10/023).

R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, D.V. Raghuram, Optical Materials 10(2), 95-100 (1998) (DOI:10.1016/S0925-3467(97)00171-7).

J.D. Major, Semiconductor Science and Technology 31(9), 093001 (2016) (DOI:10.1088/0268-1242/31/9/093001).

G.A.N. Connell, A. Lewis, Physica status solidi (b) 60(1), 291-298 (1973) (DOI:10.1002/pssb.2220600132).

T.H. Myers, S.W. Edwards, J.F. Schetzina, Journal of Applied Physics 52, 4231-4237 (1981) (DOI:10.1063/1.329272).

U.P. Khairnar, D.S. Bhavsar, R.U. Vaidya, G.P. Bhavsar, Materials Chemistry and Physics 80(2), 421-427 (2003) (DOI:10.1016/s0254-0584(02)00336-x).

L.A. Kosyachenko, E.V. Grushko, X. Mathew, Solar Energy Materials and Solar Cells 96, 231–237 (2012) (DOI:10.1016/j.solmat.2011.09.063).

Published
2020-06-15
How to Cite
YavorskyiR. (2020). Features of optical properties of high stable CdTe photovoltaic absorber layer. Physics and Chemistry of Solid State, 21(2), 243-253. https://doi.org/10.15330/pcss.21.2.243-253
Section
Scientific articles