Nanocomposite solar cells based on organic/inorganic (clonidine/Si) heterojunction with plasmonic Au nanoparticles

  • S. Mamykin V.E.Lashkaryov Institute of semiconductor physics of NAS of Ukraine
  • I. Mamontova V.E.Lashkaryov Institute of semiconductor physics of NAS of Ukraine
  • N. Kotova V.E. Lashkaryov Institute of semiconductor physics of NAS of Ukraine
  • O. Kondratenko V.E. Lashkaryov Institute of semiconductor physics of NAS of Ukraine
  • T. Barlas V.E. Lashkaryov Institute of semiconductor physics of NAS of Ukraine
  • V. Romanyuk V.E. Lashkaryov Institute of semiconductor physics of NAS of Ukraine
  • P. S. Smertenko V.E. Lashkaryov Institute of semiconductor physics of NAS of Ukraine
  • N. Roshchina V.E. Lashkaryov Institute of semiconductor physics of NAS of Ukraine
Keywords: nanocomposite, organic/inorganic heterojunction, silicon, gold nanoparticles, clonidine, electron and hole injection, dimensionless sensitivity, solar cell

Abstract

The peculiarities of optical and electrical properties of organic(clonidine)/inorganic(Si) heterojunction with plasmonic Au nanoparticles  have been investigated by reflection spectra, photoelectric and current-voltage characteristics measurements. Porous nanostructured surfaces of silicon wafers were obtained by the method of selective chemical etching initiated by metal (gold) nanoparticles. Nanocomposites based on nanostructured silicon, clonidine and gold nanoparticles have been made. Two types of structure, namely, solar cells and photodiodes on the basis of such heterojunction were analysed. The reflection spectra of light confirmed the excitation of the plasmon mode in nanocomposites with gold nanoparticles. Photoelectric studies have shown an increase of the photocurrent of solar cells obtained as a result of using both nanostructured silicon and gold nanoparticles in 1.5 and 7 times, respectively. Study of the injection properties of the structures showed that the clonidine layer always facilitates the injection of current carriers, while gold nanoparticles limit the current in the case of a flat surface.

References

A. Fujishima, K. Honda, Nature 238(5358), 37 (1972) (https://doi.org/10.1038/238037a0).

R. Zentel, Inorganics 8(3), 20 (2020) (https://doi.org/10.3390/inorganics8030020).

S. Thomas, E.H.M. Sakho, N. Kalarikkal, O.S. Oluwafemi, J. Wu, Nanomaterials for Solar Cell Applications (Elsevier Science Publishing Co Inc, United States, 2019). ISBN: 978-0128133378.

T. Dittrich, Nanocomposite Solar Cells. In book: Materials Concepts for Solar Cells, 2nd Edition (World Scientific Europe Ltd, United Kingdom, 2018), p. 383. ISBN: 978-1786344489 (https://doi.org/10.1142/9781786344496_0010).

B. O'Regan, M. Grätzel, Nature, 353, 737 (1991) (https://doi.org/10.1038/353737a0).

M. Grätzel, Photoelectrochemical cells. In book: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (Macmillan Publishers Ltd.: London, UK; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2010), p. 26. ISBN 978-9814317641 (https://doi.org/10.1142/9789814317665_0003).

A. Hagfeldt, M. Grätzel, Accounts of Chemical Research 33(5), 269 (2000) (https://doi.org/10.1021/ar980112j).

C. Li, X. Yang, R. Chen, J. Pan, H. Tian, H. Zhu, X. Wang, A. Hagfeldt, L. Sun, Solar Energy Materials and Solar Cells 91(19), 1863 (2007) (https://doi.org/10.1016/j.solmat.2007.07.002).

K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Solar Energy Materials and Solar Cells 77(1), 89 (2003) (https://doi.org/10.1016/S0927-0248(02)00460-9).

S. Venkatesan, Q. Chen, E.C. Ngo, N. Adhikari, K. Nelson, A. Dubey, J. Sun, V. Bommisetty, C. Zhang, D. Galipeau, Energy Technology 2(3), 269 (2014) (https://doi.org/10.1002/ente.201300174).

M.K. Siddiki, J. Li, D. Galipeau, Q. Qiao, Energy & Environmental Science 3(7), 867 (2010). (https://doi.org/10.1039/b926255p).

Z.A. Peng, X. Peng, Journal of the American Chemical Society 123(1), 183 (2001) (https://doi.org/10.1021/ja003633m).

D. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, M. Gerhold, Applied Physics Letters 88(18), 183111 (2006) (https://doi.org/10.1063/1.2201047).

S. Zhang, P. Cyr, S. McDonald, G. Konstantatos, E. Sargent, Applied Physics Letters 87(23), 233101 (2005) (https://doi.org/10.1063/1.2137895).

V. Gernigon, P. Lévêque, C. Brochon, J.-N. Audinot, N. Leclerc, R. Bechara, F. Richard, T. Heiser, G. Hadziioannou, The European Physical Journal Applied Physics 56, 34107 (2011) (https://doi.org/10.1051/epjap/2011110150).

J. Rud, L. Lovell, J. Senn, Q. Qiao, J. Mcleskey, Journal of materials science 40(6), 1455 (2005) (https://doi.org/10.1007/s10853-005-0582-2).

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, Y. Chen, Applied Physics Letters 92(22), 223303 (2008) (https://doi.org/10.1063/1.2938865).

M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Advanced Materials 24(5), 580 (2012) (https://doi.org/10.1002/adma.201104187).

G. Mariani, R.B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B.J. Schwartz, D.L. Huffaker, Applied Physics Letters 97(1), 013107 (2010) (https://doi.org/10.1063/1.3459961).

Ö. Güllü, A. Türüt, Solar Energy materials and Solar cells 92(10), 1205 (2008) (https://doi.org/10.1016/j.solmat.2008.04.009).

S. Jäckle, M. Liebhaber, C. Gersmann, M. Mews, K. Jäger, S. Christiansen, K. Lips, Scientific Reports 7(1), 2170 (2017) (https://doi.org/10.1038/s41598-017-01946-3).

Q. Liu, R. Ishikawa, S. Funada, T. Ohki, K. Ueno, H. Shirai, Advanced Energy Materials 5(17), 1500744 (2015) (https://doi.org/10.1002/aenm.201500744).

D. Zielke, A. Pazidis, F. Werner, J. Schmidt, Organic-silicon heterojunction solar cells on n-type silicon wafers: The Back PEDOT concept, Solar Energy Materials and Solar Cells 131, 110 (2014) (https://doi.org/10.1016/j.solmat.2014.05.022).

N.L. Dmitruk, O.Yu. Borkovskaya, I.M. Dmitruk, S.V. Mamykin, Z.J. Horvath, I.B. Mamontova, Applied Surface Science 190(1-4), 455 (2002) (https://doi.org/10.1016/S0169-4332(01)00918-7).

I. Vangelidis, A. Theodosi, M.J. Beliatis, K.K. Gandhi, A. Laskarakis, P. Patsalas, S. Logothetidis, S.R.P. Silva, E. Lidorikis, ACS Photonics 5(4), 1440 (2018) (https://doi.org/10.1021/acsphotonics.7b01390).

T.Ya. Gorbach, P.S. Smertenko, E.F. Venger, Ukrainian Journal of Physics 59(6), 601 (2014) (https://doi.org/10.15407/ujpe59.06.0601).

S. Mamykin, A. Kasuya, A. Dmytruk, N. Ohuchi, Journal of Alloys and Compounds 434-435, 718 (2007) (https://doi.org/10.1016/j.jallcom.2006.08.121).

M. Macherzynski, G. Milczarek, S. Mamykin, V. Romanyuk, A. Kasuya, Electrochimica Acta 55(14), 4395 (2010) (https://doi.org/10.1016/j.electacta.2010.02.008).

Zh. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285 (2011) (https://doi.org/10.1002/adma.201001784).

T.R. Barlas, M.L. Dmitruk, N.V. Kotova, O.I. Mayeva, V.R. Romanyuk. Superlattices and Microstructures 38, 130 (2005) (https://doi.org/10.1016/j.spmi.2005.04.003).

R. Ciach, Yu.P. Dotsenko, V.V. Naumov, A.N. Shmyryeva, P.S. Smertenko, Solar Energy materials and Solar cells 76(4), 613 (2003) (https://doi.org/10.1016/S0927-0248(02)00271-4).

P. Smertenko, L. Fenenko, L. Brehmer, S. Schrader, Advances in Colloid and Interface Science 116(1-3), 255 (2005) (https://doi.org/10.1016/j.cis.2005.05.005).

G. Luka, L. Nittler, E. Lusakowska, P. Smertenko, Organic Electronics 45, 240 (2017) (https://doi.org/10.1016/j.orgel.2017.03.031).

Published
2020-09-29
How to Cite
MamykinS., MamontovaI., KotovaN., KondratenkoO., BarlasT., RomanyukV., SmertenkoP. S., & RoshchinaN. (2020). Nanocomposite solar cells based on organic/inorganic (clonidine/Si) heterojunction with plasmonic Au nanoparticles. Physics and Chemistry of Solid State, 21(3), 390-398. https://doi.org/10.15330/pcss.21.3.390-398
Section
Scientific articles