Electric resistence hysteresis of platinum filament in chilled air/hydrogen mixtures

  • V. V. Каlіnchak Odessa I. I. Mechnykov National University
  • O. S. Chernenko Odessa I. I. Mechnykov National University
  • A. V. Fedorenko Odessa I. I. Mechnykov National University
Keywords: гістерезис, платинова дріт, каталізатор, вимушене займання, самопідтримуюче горіння, холодна водень-повітряна суміш

Abstract

Ignition of gaseous combustible mixtures on catalytically active hot solid surfaces has numerous applications in many industrial processes and is a complex process that involves close interaction between surface processes and transfer processes in the gas mixture. In this paper, stable and critical states catalytic oxidation of hydrogen impurities in air on a platinum filament are considered. It is shown that filament temperature and its resistance depending on the mixture temperature and hydrogen concentration are of the hysteresis features. Within this hysteresis region, it is possible to achieve the catalytic combustion mode of hydrogen as a result preheating the catalyst filament above a certain critical value. The dependence of the limiting hydrogen's concentration on catalyst filament's diameter, above which is observed in the cold gas mixture self-sustaining catalytic combustion without electric current.

References

S.P.Preez, D.R.Jones, D.G.Bessarabov, A.Falch, Quaresma C. Mota das Neves, C.W. Dunnill, International Journal of Hydrogen Energy 44(49), 27094 (2019) (https://doi.org/10.1016/j.ijhydene.2019.08.168).

Ying Ma, Min Chen, Cui Song, Xiaoming Zheng, Acta Physico-Chimica Sinica 24(7), 1132 (2008) (https://doi.org/10.1016/S1872-1508(08)60047-9).

P.Brussino, M.S.Gross, E.D.Banús, M.A. Ulla, Chemical Engineering and Processing - Process Intensification 146, 107686 (2019) (https://doi.org/10.1016/j.cep.2019.107686).

C.Trevino, F.J. Higuera and A.Linan, Proceedings of the Combustion Institute 29, 981 (2002). (https://doi.org/10.1016/S1540-7489(02)80124-9).

Mitu Maria, Razus Domnina, Oancea Dumitru, Revista de Chimie (Bucharest) 69(4), 870 (2018) (https://doi.org/10.37358/RC.18.4.6218).

Liqun Wu, Ting Zhang, Hongcheng Wang, Chengxin Tang and Linan Zhang, Micromachines 10(1), 71 (2019) (https://doi.org/10.3390/mi10010071).

D.A. Frank-Kamenetski, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987).

V.V.Kalinchak, A.S. Chernenko, A.N. Sofronkov, A.V. Fedorenko, Physics and chemistry of solid state 18(1), 52 (2017) (https://doi.org/10.15330/pcss.18.1.52-57).

V.V. Kalinchak, A.S. Chernenko and V.V. Kalugin, Journal of Engineering Physics and Thermophysics 87(2), 325 (2014) (https://doi.org/10.1007/s10891-015-1244-0).

R.M. Soubaihi, K.M. Saoud and J. Dutta, Catalysts 8(12), 660 (2018) (https://doi.org/10.3390/catal8120660).

A. Abedi, R. Hayes, M. Votsmeier and W.S. Epling, Catal Lett. 142, 930 (2012) (https://doi.org/10.1007/s10562-012-0861-x).

V.V.Kalinchak, A.S. Chernenko,A.N.Sofronkov, A.V. Fedorenko, Physics and chemistry of solid state 18(4), 449 (2017) (https://doi.org/10.15330/pcss.18.4.449-454).

Published
2020-09-30
How to Cite
КаlіnchakV. V., Chernenko O. S., & FedorenkoA. V. (2020). Electric resistence hysteresis of platinum filament in chilled air/hydrogen mixtures . Physics and Chemistry of Solid State, 21(3), 420-425. https://doi.org/10.15330/pcss.21.3.420-425
Section
Scientific articles