The effect of electrolysis conditions during microarc oxidation on the phase-structural state, hardness and corrosion resistance of magnesium alloys

  • V.V. Subbotina National Technical University «Kharkiv Polytechnic Institute»
  • V.V. Belozerov National Technical University «Kharkiv Polytechnic Institute»
Keywords: microarc oxidation, ceramic coatings, alloy MA5, microstructure, X-ray phase analysis, microhardness, coating thickness, corrosion tests

Abstract

By the method of microarc oxidation for different types of electrolytes (which include KOH, Na2SiO3, Н2О2, NaOH, NaAlO2, Na5P3O10, NaF) and electrolysis conditions, multifunctional ceramic coatings on a magnesium alloy were obtained. The phase composition of the coating includes magnesium oxide (MgO), spinel MgAl2O4, Mg2SiO4 and Мg3(РО4)2 compounds. The phase composition of the coatings is determined by the composition of the electrolyte. The obtained MAO coatings provide high hardness, which is 1500 to 7300 MPa, as well as high corrosion resistance. The results obtained make it possible to recommend MAO coatings on magnesium alloys both as an external (functional) layer and for the formation of an underlayer for the subsequent application of protective coatings (varnishes, polymers, polytetrafluoroethylene, in particular).

References

Y. Gu, X. Cai, Y. Guo, C. Ning, Mater design 43, 542 (2013) (https://doi.org/10.1016/j.matdes.2012.07.049).

R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G. E. Thompson, Surface and coatings technology 203 (16), 2207 (2009) (https://doi.org/10.1016/j.surfcoat.2009.02.011).

G.-H. Lv, H. Chen, L. Li, E.-W. Niu, H. Pang, B. Zou, S.-Z. Yang, Current applied physics 9(1), 126 (2009) (https://doi.org/10.1016/j.cap.2007.12.007).

H. Luo, Q. Cai, B. Wei, B. Yu, D. Li, J. He, Z. Liu, Journal of alloys and compounds 464(1–2), 537 (2008) (https://doi.org/10.1016/j.jallcom.2007.10.072)

V. J Kharanagh, M. A. F. Sani, E. Rafizadeh, Surface engineering 30(3), 224 (2014) (https://doi.org/10.1179/1743294413Y.0000000190).

Z. P Yao, D. L. Wang, Q. X. Xia, Y. J. Zhang, Z. H. Jiang, F. P. Wange, Surface engineering 28(2), 96 (2012) (https://doi.org/10.1179/1743294411Y.0000000045).

D. Y. Hwang, Y. M. Kim, D. Park, B. Yoo, and D. H. Shin, Electrochimica Acta 54(23), 5479 (2009) (https://doi.org/10.1016/j.electacta.2009.04.047).

U Malayoglu, K. C. Tekin, S. Shrestha, Surface & coatings technology 205(6), 1793 (2010) (https://doi.org/10.1016/j.surfcoat.2010.08.022).

R. O Hussein, D. O Northwood, X. Nie, Surface & coatings technology 237, 357 (2013) (https://doi.org/10.1016/j.surfcoat.2013.09.021).

Y. Mori, A. Koshi, J. Liao, H. Asoh, S. Ono, Corrosion science 88, 254 (2014) (https://doi.org/10.1016/j.corsci.2014.07.038).

L. R. Krishna, G. Poshal, G. Sundararajan, Metallurgical and materials transactions A 41(13), 3499 (2010) (http://dx.doi.org/10.1007/s11661-010-0412-2).

S. Durdu, S. Bayramoglu, A. Demirtaş, M. Usta, A. H. Üçışık, Vacuum 88, 130 (2013) (https://doi.org/10.1016/j.vacuum.2012.01.009).

A. Mandelli, M. Bestetti, A. Da Forno, N. Lecis, S. P. Trasatti, M. A. Trueba, Surface & coatings technology 205(19), 4459 (2011) (https://doi.org/10.1016/j.surfcoat.2011.03.06).

R. O. Hussein, P. Zhang, X. Nie, Y. Xia, D. O. Northwood, Surface & coatings technology 206(7), 1990 (2011) (https://doi.org/10.1016/j.surfcoat.2011.08.060).

H. Chen, J. M. Hao, D. X. Li, L. P. Li, Advanced materials research 236-238, 1954 (2011) (https://doi.org/10.4028/www.scientific.net/AMR.236-238.1954).

P. Su, X. Wu, Y. Guo, Z. Jiang, Journal of alloys and compounds 475(1-2), 773 (2008) (https://doi.org/10.1016/j.jallcom.2008.08.030).

P. Su, X. Wu, Z. Jiang, Materials Letters 62(17-18), 3124 (2008) (https://doi.org/10.1016/j.matlet.2008.02.023).

V. Belozerov, O. Sоbоl, A. Mahatilova, V. Subbotinа, T. A. Tabaza, U. F. Al-Qawabeha, S M. Al-Qawabah, Eastern-european journal of enterprise technologies 5(12-89), 52 (2017) (https://doi.org/10.15587/1729-4061.2017.112065).

V. Belozerov, A. Mahatilova, O. Sobol', V.a Subbotinа, A. Subbotin, Eastern-European Journal of enterprise technologies 2(5-86),39 (2017) (https://doi.org/10.15587/1729-4061.2017.96721).

V. Subbotinа, O. Sоbоl, V. Belozerov, U. F. Al-Qawabeha, T. A. Tabaza, S. M. Al-Qawabah, V. Shnayder, Eastern-European Journal of enterprise technologies 3(12-105), 6 (2020) (https://doi.org/10.15587/1729-4061.2020.205474).

Published
2020-09-30
How to Cite
SubbotinaV., & BelozerovV. (2020). The effect of electrolysis conditions during microarc oxidation on the phase-structural state, hardness and corrosion resistance of magnesium alloys. Physics and Chemistry of Solid State, 21(3), 545-551. https://doi.org/10.15330/pcss.21.3.545-551
Section
Scientific articles