Structural and electrophysical properties of thermally expanded graphite prepared by chemical methods: comparative analysis

  • V.O. Kotsyubynsky Vasyl Stefanyk Precarpathian National University
  • V.M. Boychuk Vasyl Stefanyk Precarpathian National University
  • B.I. Rachiy Vasyl Stefanyk Precarpathian National University
  • M.A. Hodlevska Vasyl Stefanyk Precarpathian National University
  • S.I. Budzulyak V.Ye. Lashkaryev Institute of Semiconductor Physics NAS of Ukraine
Keywords: thermally extended graphite, XRD, Raman spectroscopy, electrical conductivity

Abstract

The aim of this paper is the comparison of structural, morphological and electrical properties of thermally extended graphite synthesized by chemical oxidation of graphite with sulfur of nitric acids at all other same conditions. Thermal treatments of graphite intercalation compounds were performed at a temperature of 600°C on the air for 10 min but additional annealing in temperature range of 100-600oC for 1 hour was done. The obtained materials were characterized by XRD, Raman spectroscopy and impedance spectroscopy. The evolution of structural ordering of thermally extended graphite samples at increasing of annealing temperature was traced. It was determined that the additional annealing allows to control the electrical conductivity and structural disordering degree of extended graphite samples that is useful for preparation of efficient current collectors for electrochemical capacitors.

References

H. Atsumi, K. Tauchi, Journal of alloys and compounds 356, 705 (2003) (https://doi.org/10.1016/S0925-8388(03)00290-1).

M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon 38(2), 183 (2000) (https://doi.org/10.1016/S0008-6223(99)00141-4).

Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, C. Wang, Nature communications 5(1), 1 (2014) (https://doi.org/10.1038/ncomms5033 (2014)).

R.R. Moore, C.E. Banks, R.G. Compton, Analytical chemistry 76(10), 2677 (2004) (https://pubs.acs.org/doi/abs/10.1021/ac040017q).

S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Sensors 16(1), 103 (2016) (https://doi.org/10.3390/s16010103).

L.O. Shyyko, V.O. Kotsyubynsky, I.M. Budzulyak, P. Sagan, Nanoscale research letters 11(1), 1 (2016) (https://doi.org/10.1186/s11671-016-1451-4).

F. Barzegar, A. Bello, D. Momodu, M.J. Madito, J. Dangbegnon, N. Manyala, Journal of Power Sources 309, 245 (2016) (https://doi.org/10.1016/j.jpowsour.2016.01.097).

A.V. Yakovlev, A.I. Finaenov, S.L. Zabud’kov, E.V. Yakovleva, Russian journal of applied chemistry 79(11), 1741 (2006) (https://doi.org/10.1134/S1070427206110012).

A.I. Kachmar, V.M. Boichuk, I.M Budzulyak, V.O. Kotsyubynsky, B.I Rachiy, R.P. Lisovskiy, Fullerenes, Nanotubes and Carbon Nanostructures 27(9), 669 (2019) (https://doi.org/10.1080/1536383X.2019.1618840).

S.C. Wong, E.M. Sutherland, F.M. Uhl, Materials and manufacturing processes 21(2), 159 (2006) (https://www.tandfonline.com/doi/abs/10.1081/AMP-200068659).

S. Reich, C. Thomsen, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362(1824), 2271 (2004) (https://doi.org/10.1098/rsta.2004.1454).

A. Kaniyoor, S. Ramaprabhu, Aip Advances 2(3), 032183 (2012) (https://doi.org/10.1063/1.4756995).

X. Zhang, Q. Yan, W. Leng, J. Li, J. Zhang, Z. Cai, E. B. Hassan, Materials 10(8), 975 (2017) (https://doi.org/10.3390/ma10080975).

L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, M.A. Pimenta, Carbon 46(2), 272 (2008) (https://doi.org/10.1016/j.carbon.2007.11.015).

Published
2020-12-30
How to Cite
KotsyubynskyV., BoychukV., RachiyB., HodlevskaM., & BudzulyakS. (2020). Structural and electrophysical properties of thermally expanded graphite prepared by chemical methods: comparative analysis. Physics and Chemistry of Solid State, 21(4), 591-597. https://doi.org/10.15330/pcss.21.4.591-597
Section
Scientific articles

Most read articles by the same author(s)

1 2 > >>