Physical and Chemical Fundamentals of Sodium Phosphate Use in Foundry Production


  • M.V. Tyshkovets National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • R.V. Liutyi National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • D.V. Liuta National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • O.I. Sheiko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”



binder, core mixture, compressive strength, ionic radius, orthophosphoric acid, sodium pyrophosphate, sodium tripolyphosphate


The technology of synthesis of inorganic binder material based on sodium tripolyphosphate Na5P3O10 and orthophosphoric acid has been developed. The sequence of physicochemical transformations in this system, as well as the optimal mass ratio of orthophosphoric acid and sodium tripolyphosphate are established. The research uses methods of quantitative and qualitative X-ray phase analysis, differential thermal analysis, standard methods of testing samples for compressive strength. The ratios of the atomic radii of the cation (Na) and the anion (P2O7), as well as the presence of hydrogen bonds, provide a significant increase in the binding potential compared to other sodium phosphates. It was found that the strengthening of mixtures with 2…8 mass parts including sodium pyrophosphate, the filler of which is quartz-based sand, occurs as intensely as possible when heated to 150°C. A further increase in temperature above 250 °C leads to the conversion of sodium pyrophosphate to ordinary (non-polymeric) metaphosphate NaPO3, which exists without changes in chemical structure up to 1000°C. The developed binder material, given the global trends of decarbonization and resource conservation, is a competitive alternative to widely used synthetic resins and other organic materials. It does not contain harmful substances and does not emit dangerous products when heated.


L.G. Sudacas, Phosphate binding systems (RIA «Kvintet», St. Petersburg, 2008).

V.A. Kopeykin, A.P. Petrova, I.L. Rashkovan, Phosphate-based materials (Moscow, Khimiya, 1976) (


Ye.M. Kryzhanovsʹkyy, Collection of scientific articles “III All-Ukrainian Congress of Ecologists with International Participation” (Vinnytsia, 2011) v. 1, pp. 216-219.

V. I. Dubovyy, O. V. Dubovyy, Ecological culture: a textbook (Kherson, Hrinʹ D.S., 2016).

V.Ye. Pochapsʹkyy, S.O. Osypenko, Proceedings of the International Scientific and Practical Conference "Environmental Problems of the Environment and Environmental Management in the Context of Sustainable Development" (Poltava, 2019), pp. 90-94.

M.M Sychev, Inorganic adhesives (Leningrad, Khimiya, 1974).

Yu.M. Butt, V.Ye. Kaushanskiy, Inorganic materials (1973).

J. D. Wygant, Ceramic production processes (Moscow, Inlit, 1960).

V.A. Kopeykin, V.S. Klement'yeva, B.L. Krasnyy, Refractory solutions on phosphate binders (Moscow, Metallurgiya, 1986).

V.I. Fokin, N.V. Bagrova, G.P. Korolev, D.F. Bagrov, Foundry production, No. 9. pp. 17-18 (1998).

S.P. Doroshenko, V.P. Avdokushyn, K. Rusyn, I. Matsashek, Molding materials and mixtures (Kyiv, Vyshcha shkola, 1980).

S.P. Doroshenko, Molding mixtures (Kyiv, IZMN, 1997).

A.N. Boldin, N.I. Davydov, S.S. Zhukovskiy and other, Foundry molding materials. Molding, core mixtures and coatings (Moscow, Mashinostroyeniye, 2006).

E.I. Sych, New technological processes of foundry (Moscow, 1967) pp. 205-210.

Makiguchi Toshisada, Muramatsu Akira, Kurabe Hyojir, Patent US 4078599 A (14 March1978).

Kawasaki Heavy IND LTD, Patent GB 1192633 A (20 May 1970).

A.P. Baranov, V.N. Koptelov, R.Sh. Nazmutdinov and E.I. Pospelova, Patent RU 2228310 С2 (10 May 2004).

R.V. Lyutyy, Foundry production, No. 5, pр. 13-17 (2016).

R.V. Lyutyy, D.V. Keush, V.O. Naboka, A.R. Pyvoshchuk, Вісник ДДМА, 1(37), 55-59 (2016).

R.V. Lyutyy, D.V. Keush, Foundry production, No. 4, p. 23-28 (2017).

R.V. Liutyi, M.V. Tyshkovets, D.V. Liuta, Physics and Chemistry of Solid State. 21(1), 176-184 (2020) (

J. Kingery, Introduction to ceramics (Moscow, Izdatel'stvo literatury po stroitel'stvu, 1967).

R.V. Lyutyy, I.M. Guriya, D.V. Keush, V.S. Smol'skaya, Foundry production, No. 5, pр. 28-31 (2014).

B. Lorent, M. Szeplaki, Thermogravimetrische und thermoanalytische Untersuchungen kondensierden Phosphate, No. 11, pр. 357-363 (1967).

N.M. Dombrovskiy, J. Sci. Chem., v. 5, No. 8, pр. 1699-1710 (1960).

R.A. Lidin et al., Chemical properties of inorganic substances: Textbook for universities (Moscow, Khimiya, 2000) ISBN 5-7245-1163-0.

N.M. Dombrovskiy, J. Sci. Chem., v. 7, No. 1, pр. 104-112 (1962).

S.I. Berul', N.K. Voskresenskaya, J. Sci. Chem., v. 10, No. 5, pр. 1110-1120 (1965).

P.N. Fedorov, M.V. Mekhoseev, V.N. Krivenko, J. Sci. Chem., v. 7, No. 1, pр. 76-80 (1962).

N.M. Smirnova, N.I. Silant'eva, R.G. Lepilina et al., Research in the production of phosphorus and its compounds, No. 27, pр. 74-79 (Moscow, 1977).



How to Cite

Tyshkovets, M., Liutyi, R., Liuta, D., & Sheiko, O. (2020). Physical and Chemical Fundamentals of Sodium Phosphate Use in Foundry Production. Physics and Chemistry of Solid State, 21(4), 756–763.



Scientific articles

Most read articles by the same author(s)