Development and Application of Thin Wide-Band Screening Composite Materials

  • I.V. Senyk Kyiv National University of Technologies and Design
  • Y.A. Kuryptya Kyiv National University of Technologies and Design
  • V.Z. Barsukov Kyiv National University of Technologies and Design
  • O.O. Butenko Kyiv National University of Technologies and Design
  • V.G. Khomenko Kyiv National University of Technologies and Design
Keywords: hybrid carbon nanomaterial, polymer matrix, electromagnetic shielding, broadband shielding composite

Abstract

The paper is dedicated to the development of effective composite coatings with the use of carbon fillers of different morphology, their research, and application in the broadband frequency range. Electromagnetic loss studies were performed according to international standards ASTM D4935, IEEE-STD-299, and the US Department of Defence standard MIL-STD 461F. The impact of hybrid carbon nanomaterial "graphene/nanotubes" on the electrophysical properties of the composite material has been analyzed. As a result, the research laboratory technologies of production of composite coating on water and non-water (alcohol) basis are developed based on the carbon fillers of various morphology and also magnetite. The shielding properties of most of the created composites are estimated in the frequency range from 50 MHz to 30 GHz. The state enterprise “All-Ukrainian center for standardization, metrology, certification, and consumers’ rights protection” (here and after “Ukrmetrteststandart”) conducted comparative tests of the developed coating (in the form of paint) with a protective coating # 842 MG Chemicals (Burlington, Ontario, Canada) based on silver microparticles. Developed water-based composites can be used for interior decoration, in the formation of electromagnetic screens, thin gradient coatings to protect people from electromagnetic radiation in the microwave range.

References

M.H. Al-Saleh, U. Sundararaj, Carbon 47(3), 1738 (2009) (DOI: 10.1016/j.carbon.2009.02.030).

D.A. Savitz, Environmental health perspectives 101(4), 83 (1993) (DOI: 10.1289/ehp.93101s483).

J. Wu, J. Chen, Y. Zhao, W. Liu, W. Zhang, Composites Part B: Engineering 105, 167 (2016) (DOI: 10.1016/j.compositesb.2016.08.042).

C. Xia, J. Yu, S. Q. Shi, Y. Qiu, L. Cai, H. F. Wu, H. Zhang, Composites Part B: Engineering 114, 121 (2017) (DOI: 10.1016/j.compositesb.2017.01.044).

Y.J. Chen, Y. Li, B.T.T. Chu, I.T. Kuo, M. Yip, N. Tai, Composites Part B: Engineering 70, 231 (2015) (DOI: 10.1016/j.compositesb.2014.11.006).

X. Yin, Y. Xue, L. Zhang, L. Cheng, Ceramics International 38(3), 2421 (2012) (DOI: 10.1016/j.ceramint.2011.11.008).

R.S. Kasevich, IEEE Spectrum 39(8), 15 (2002) (DOI: 10.1109/MSPEC.2002.1021945).

R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, K. Straif, The lancet oncology 12(7), 624 (2011) (DOI: 10.1016/S1470-2045(11)70147-4).

J. Schüz, A. Ahlbom, Radiation protection dosimetry 132(2), 202 (2008) (DOI: 10.1093/rpd/ncn270).

J. Grellier, P. Ravazzani, E. Cardis, Environment international 62, 55 (2014) (DOI: 10.1016/j.envint.2013.09.017).

C. Wang, Y. Ding, Y. Yuan, X. He, S. Wu, S. Hu, Y. Li, Journal of Materials Chemistry C. 3(45), 11893 (2015) (DOI: 10.1039/C5TC03127C).

Y. Mamunya, L. Matzui, L. Vovchenko, O. Maruzhenko, V. Oliynyk, S. Pusz, U. Szeluga, Composites Science and Technology 170, 51 (2019) (DOI: 10.1016/j.compscitech.2018.11.037).

L. Vovchenko, L. Matzui, V. Oliynyk, V. Launets, Y. Mamunya, O. Maruzhenko, Molecular Crystals and Liquid Crystals 672(1), 186 (2018) (DOI: 10.1080/15421406.2018.1555349).

J. Guo, H. Song, H. Liu, C. Luo, Y. Ren, T. Ding, J. Kong, Journal of Materials Chemistry C. 5(22), 5334 (2017) (DOI: 10.1039/C7TC01502J).

P. Saville, Review of radar absorbing materials (DRDC Atlantic, Dartmouth, 2005).

Y. Fan, H. Yang, X. Liu, H. Zhu, G. Zou, Journal of Alloys and Compounds 461(1-2), 490 (2008) (DOI: 10.1016/j.jallcom.2007.07.034).

D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Carbon 77, 756 (2014) (DOI: 10.1016/j.carbon.2014.05.080).

G.A .Rao, S.P. Mahulikar, The aeronautical journal 106(1066), 629 (2002) (DOI: 10.1017/S0001924000011702).

H.K. Kim, M.S. Kim, K. Song, Y.H. Park, S.H. Kim, J. Joo, J.Y. Lee, Synthetic Metals 135, 105 (2003) (DOI: 10.1016/S0379-6779(02)00876-7).

E.J. Carlson, Materials performance 29(7), 76 (1990) (DOI: 10.1007/978-0-387-46096-3).

C. Li, C. Zhou, J. Lv, B. Liang, R. Li, Y. Liu, G. Yang, Carbon 149, 190 (2019) (DOI: 10.1016/j.carbon.2019.04.012).

D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Journal of Materials Chemistry 22(36), 18772 (2012) (DOI: 10.1039/c2jm32692b).

G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, Journal of Materials Chemistry 21(3), 829 (2011) (DOI: 10.1039/c0jm02546a).

M. Mahmoodi, M. Arjmand, U. Sundararaj, S. Park, Carbon 50(4), 1455 (2012) (DOI:10.1016/j.carbon.2011.11.004).

U.J. Mahanta, J.P. Gogoi, D. Borah, N.S. Bhattacharyya, IEEE Transactions on Dielectrics and Electrical Insulation 26(1), 194 (2019) (DOI:10.1109/TDEI.2018.007443).

P. Mehdizadeh, H. Jahangiri, Journal of Nanostructures 6(2), 140 (2016) (DOI: 10.7508/jns.2016.02.006).

J. Tang, S. Bi, X. Wang, G.L. Hou, X.J. Su, C.H. Liu, H. Li, Journal of Materials Science 54(22), 13990 (2019) (DOI:10.1007/s10853-019-03902-0).

S. Pande, A. Chaudhary, D. Patel, B.P. Singh, R.B. Mathur, Rsc Advances 4(27), 13839 (2014) (DOI: 10.1039/c3ra47387b).

S.İ. Mıstık, E. Sancak, S. Ovalı, M. Akalın, Journal of ElEctromagnEtic WavEs and applications 31(13), 1289 (2017) (DOI: 10.1109/TEMC.2019.2947133).

D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, Z.M. Li, Advanced Functional Materials 25(4), 559 (2015) (DOI: 10.1002/adfm.201403809).

S.H. Park, J.H. Ha, Materials 12(9), 1395 (2019) (DOI: 10.3390/ma12091395).

Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Advanced materials 25(9), 1296 (2013) (DOI: 10.1002/adma.201204196).

Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, L. Cheng, Advanced Materials 29(31), 1701583 (2017) (DOI: 10.1002/adma.201701583).

H. Sadegh, R. Shahryari-ghoshekandi, Nanomedicine Journal 2(4), 231 (2015) (DOI: 10.7508/nmj. 2015.04.001).

O.V. Kharissova, B.I. Kharisov, Springer, Cham. 173 (2017) (DOI:10.1007/978-3-319-62950-6_5).

P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Composites Part A: Applied Science and Manufacturing 41(10), 1345 (2010) (DOI: 10.1016/j.compositesa.2010.07.003).

V.G. Udovitskiy, N.I. Slipchenko, A.Yu. Kropotov, B.N. Chichkov, Zhurnal fіziki ta іnzhenerії poverkhnі 2(2-3), 143 (2017).

V. Barsukov, I. Senyk, O. Kryukova, O. Butenko, Materials Today: Proceedings 5(8), 15909 (2018) (DOI: 10.1016/j.matpr.2018.06.063).

E. Drakakis, E. Kymakis, G. Tzagkarakis, D. Louloudakis, M. Katharakis, G. Kenanakis, M. Suchea, V. Tudose, E. Koudoumas, Applied Surface Science, 398, 15(2017) (DOI: 10.1016/j.apsusc.2016.12.030).

E. Drakakis, M. Suchea, V. Tudose, G. Kenanakis, D. Stratakis, K. Dangakis, A. Miaoudakis, D. Vernardou, E. Koudoumas, Thin solid films 65, 152 (2018) (DOI: 10.1016/j.tsf.2017.07.023).

Published
2020-12-31
How to Cite
SenykI., KuryptyaY., BarsukovV., ButenkoO., & KhomenkoV. (2020). Development and Application of Thin Wide-Band Screening Composite Materials. Physics and Chemistry of Solid State, 21(4), 771-778. https://doi.org/10.15330/pcss.21.4.771-778
Section
Scientific articles