Influence of Bias Potential Magnitude on Structural Engineering of ZrN-Based Vacuum-Arc Coatings

  • O.V. Sobol’ National Technical University «Kharkiv Polytechnic Institute»
  • H.O. Postelnyk National Technical University “Kharkiv Polytechnic Institute”
  • N.V. Pinchuk National Technical University «Kharkiv Polytechnic Institute»
  • A.A. Meylekhov National Technical University «Kharkiv Polytechnic Institute»
  • M.A. Zhadko National Technical University «Kharkiv Polytechnic Institute»
  • A.A. Andreev National Science Center “Kharkiv Institute of Physics and Technology”
  • V.A. Stolbovoy National Science Center “Kharkiv Institute of Physics and Technology”
Keywords: vacuum arc, zirconium nitride, multilayer nanocomposites, X-ray structural analysis, nanostructure, interlayer conjugation, texture, substructure

Abstract

The creation of the scientific foundations for the structural engineering of ultrathin nanolayers in multilayer nanocomposites is the basis of modern technologies for the formation of materials with unique functional properties. It is shown that an increase in the negative bias potential (from -70 to -220 V) during the formation of vacuum-arc nanocomposites based on ZrN makes it possible not only to control the preferred orientation of crystallites and substructural characteristics but also changes the conditions for conjugation of crystal lattices in ultrafine (about 8 nm) nanolayers.

References

B.D. Morton, H. Wang, R.A. Fleming, M. Zou, Tribology letters 42 (1), 51 (2011) (https://doi.org/10.1007/s11249-011-9747-0).

O.V. Sobol, A.A. Andreev, V.F. Gorban, A.A. Meylekhov, H.O. Postelnyk, V.A. Stolbovoy, Journal of Nano- and Electronic Physics 8(1), 1042 (2016) (https://doi.org/10.21272/jnep.8(1).01042).

O.V. Sobol, A.A. Postelnyk, A.A. Meylekhov, A.A. Andreev, V.A. Stolbovoy, V.F. Gorban, Journal of nano- & electronic physics 9 (3), 03003 (2017) (https://doi.org/10.21272/jnep.9(3).03003).

P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Progress in Materials Science 51, 1032 (2006) (https://doi.org/10.1016/j.pmatsci.2006.02.002).

P.H. Mayrhofer, D. Music, J.M. Schneider, Appl. Phys. Letter. 88, 071922 (2006) (https://doi.org/10.1063/1.2409364).

O.V. Sobol’, A.A. Andreev, V.F. Gorban’, V.A. Stolbovoy, A.A. Melekhov, A.A. Postelnyk, Technical physics 61 (7), 1060 (2016) (https://doi.org/10.1134/S1063784216070252).

A.O. Eriksson, J.Q. Zhu, N. Ghafoor, J. Jensen, G. Greczynski, M.P. Johansson, J. Sjolen, M. Oden, L. Hultman, J. Rosen, Journal of Materials Research 26, 874 (2011) (https://doi.org/10.1557/jmr.2011.10).

Q. Zhu, A.O. Eriksson, N. Ghafoor, M.P. Johansson, G. Greczynski, L. Hultman, J. Rosen, M. Oden, Journal of Vacuum Science and Technology A 29, 031601 (2011) (https://doi.org/10.1116/1.3569052).

V. Braic, A. Vladescu, M.Balaceanu, C.R.Luculescu, M.Braic, Surface and Coatings Technology Volume 211, 117 (2012) (https://doi.org/10.1016/j.surfcoat.2011.09.033).

O.V. Sobol, A.A. Andreev, V.F. Gorban, Metal Science and Heat Treatment 58 (1), 37 (2016) (https://doi.org/10.1007/s11041-016-9961-3).

O.V. Sobol’, A.A. Meilekhov, Technical Physics Letters 44 (1), 63 (2018) (https://doi.org/10.1134/S1063785018010224).

M.A. Al-Bukhaiti, K.A. Al-Hatab, W. Tillmann, F. Hoffmann, T. Sprute, Appl. Surf. Sci. 318, 180 (2014) (https://doi.org/10.1016/j.apsusc.2014.03.026).

X. Chu, S.A. Barnett, J. Appl. Phys. 77, 4403 (1995) (https://doi.org/10.1063/1.359467).

Y.Z. Tsai, J.G. Duh, Thin Solid Films 518, 7523 (2010) (https://doi.org/10.1016/j.tsf.2010.05.038).

Q. Luo, Wear 271, 2058 (2011) (https://doi.org/10.1016/j.wear.2011.01.054).

Y. Qiu, S. Zhang, J.W. Lee, B. Li, Y. Wang, D. Zhao, Appl. Surf. Sci. 279, 189 (2013) (https://doi.org/10.1016/j.apsusc.2013.04.068).

S. Zhang, D. Sun, Y. Fu, H. Du, Surf. Coatings Technol. 167, 113 (2003) (https://doi.org/10.1016/S0257-8972(02)00903-9).

J. Patscheider, MRS Bull. 2, 180 (2003) (https://doi.org/10.1557/mrs2003.59).

E. Liu, J. Pu, Z. Zeng, Y. Wang, W. Zhao, Surf. Eng. 33, 633 (2017) (https://doi.org/10.1080/02670844.2017.1292704).

O.V. Sobol’, O.A. Shovkoplyas, Technical Physics Letters 39 (6), 536 (2013) (https://doi.org/10.1134/S1063785013060126).

http://www.icdd.com

L.S. Palatnik, M.Ya. Fuks, V.M. Kosevich, Mekhanizm obrazovaniya i substruktura kondensirovannykh plenok (M.: Nauka: 1972)).

O.V. Sobol, A.A. Andreev, V.F. Gorban, A.A. Meylekhov, H.O. Postelnyk, V.A. Stolbovoy, Nano- and Electronic Physics 8 (1), 01042 (2016) (https://doi.org/10.21272/jnep.8(1).01042).

O.V. Sobol, A.A. Postelnyk, A.A. Meylekhov, A.A. Andreev, V.A. Stolbovoy, V.F. Gorban, Journal of nano- & electronic physics 9 (3), 03003 (2017) (https://doi.org/10.21272/jnep.9(3).03003).

O.V. Sobol, A.A. Andreev, V.A. Stolbovoi, V.E. Fil`chikov, Technical physics letters 38 (2), 168 (2012). (https://doi.org/10.1134/S1063785012020307).

R. Hahn, M. Bartosik, R. Soler, Scripta Materialia 124, 67 (2016) (https://doi.org/10.1016/j.scriptamat.2016.06.030).

P. Eh. Hovsepian, D.B. Lewis, Q. Luo, A. Farinotti, Thin Solid Films 488 (1-2), 1 (2005) (https://doi.org/10.1016/j.tsf.2005.03.016).

Chang-Lin Liang, Guo-An Cheng, Rui-Ting Zheng, Hua-Ping Liu, Thin Solid Films 520, 813 (2011) (https://doi.org/10.1016/j.tsf.2011.04.159).

Yu X. Xu, Li Chen, Zi Q. Liu, Fei Pei, Yong Du, Surface and Coatings Technology 321, 180 (2017) (https://doi.org/10.1016/j.surfcoat.2017.04.057).

M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, Journal of Alloys and Compounds 483 (1–2), 321 (2009) (https://doi.org/10.1016/j.jallcom.2008.08.133).

Published
2021-02-24
How to Cite
[1]
Sobol’O., PostelnykH., PinchukN., MeylekhovA., ZhadkoM., AndreevA. and StolbovoyV. 2021. Influence of Bias Potential Magnitude on Structural Engineering of ZrN-Based Vacuum-Arc Coatings. Physics and Chemistry of Solid State. 22, 1 (Feb. 2021), 66-72. DOI:https://doi.org/10.15330/pcss.22.1.66-72.
Section
Scientific articles