Molecular Dynamics Modeling of Thermal Conductivity of Silicon/Germanium Nanowires

Authors

  • A. Kishkar Taras Shevchenko National University of Kyiv
  • V. Kurylyuk Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15330/pcss.19.3.222-225

Keywords:

thermal conductivity, nanowire, silicon, germanium, molecular dynamics

Abstract

The thermal conductivity of silicon/germanium nanowires with different geometry and composition has beenstudied by using the nonequilibrium molecular dynamics method. The thermal conductivity of the Si1-xGexnanowire is shown to firstly decrease, reaches a minimum at x=0.4 and then to increase, as the germaniumcontent x grows. It was found that in the tubular Si nanowires the thermal conductivity decreases monotonouslywith increasing radius of the cylindrical void. The phonon spectra were calculated and the mechanisms of phononscattering in the investigated nanowires were analyzed.

References

[1] P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, Z. M.Wang, Nano Today, 11(6), 704 (2016).
[2] B. Wang, T. Stelzner, R. Dirawi, O. Assad, N. Shehada, S. Christiansen, and H. Haick, ACS Appl. Mater. Interfaces, 4(8), 4251 (2012).
[3] M. Zamfir, H. Nguyen, E. Moyen, Y. Lee, and D.Pribat, J. Mater. Chem. A, 1, 9566 (2013).
[4] Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W.Goddard, J. Heath, Nature, 451, 168 (2008).
[5] G. Schierning, Phys. Status Solidi A, 211(6), 1 (2014).
[6] G. Gadea, A. Morata, A. Tarancon, Semiconductors and Semimetals, 2018 (In press).
a. Majumdar, Science, 303, 777 (2004).
[7] Hochbaum, R. Chen, R. Delgado, W. Liang, E. Garnett, M. Najarian, A. Majumdar and P. Yang, Nature, 451, 163 (2008).
[8] Y. Wang, B. Liab and G. Xie, RSC Adv., 3, 26074 (2013).
[9] J. Lee; J. Lim; P. Yang, Nano Lett., 15, 3273 (2015).
[10] J. Lim, K. Hippalgaonkar, S. Andrews, A. Majumdar, and P. Yang. Nano Lett., 12, 2475 (2012).
[11] M. Hu and D. Poulikakos, Nano Lett. 12, 5487 (2012).
[12] G. Xie, B. Li, L. Yang, J. Cao, Z. Guo, J. Appl. Phys., 113, 083501 (2013).
[13] Y. Zhao, L. Yang, L. Kong, M. Nai, D. Liu, J. Wu, Y. Liu, S. Chiam, W. Chim, C. Lim, B. Li, J. Thong, and K. Hippalgaonkar, Adv. Funct. Mater., 27, 1702824 (2017).
[14] J. Jiang, N. Yang, B. Wang, and T. Rabczuk, Nano Lett., 13, 1670 (2013).
[15] H. Kim, I. Kim, H. Choi, and W. Kim, Appl. Phys. Lett. 96, 233106 (2010).
[16] V.Kuryliuk, O. Korotchenkov, Physica E: Low-dimensional Systems and Nanostructures, 88, 228 (2017).
[17] D. Noid, M. Koszykowski, and R. Marcus, The Journal of Chemical Physics, 67, 404 (1977).
[18] M. Hu, K. Giapis, J. Goicochea, X. Zhang, and D. Poulikakos, Nano Lett., 11, 618 (2011).

Published

2019-10-03

How to Cite

Kishkar, A., & Kurylyuk, V. (2019). Molecular Dynamics Modeling of Thermal Conductivity of Silicon/Germanium Nanowires. Physics and Chemistry of Solid State, 19(3), 222–225. https://doi.org/10.15330/pcss.19.3.222-225

Issue

Section

Scientific articles