Solubility of Cu, Ni, Mn in Boron-Rich Fe-B-C Alloys
DOI:
https://doi.org/10.15330/pcss.22.1.110-116Keywords:
iron borides, alloying elements, solubility, cooling rate, mechanical propertiesAbstract
In the present study, the microstructure development and mechanical properties of the cast boron-rich Fe–B–C alloys cooled at 10 and 103 K/s were investigated as functions of alloying elements additions. These alloys were prepared in the following compositional ranges: B (10–14 wt.%), C (0.1–1.2 wt.%), M (5 wt.%), where M – Cu, Ni or Mn, balance Fe. Structural properties were characterized by quantitative metallography, X-Ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. Mechanical properties of the structural constituents, such as microhardness and fracture toughness, were measured by a Vickers indenter. Copper becomes negligibly incorporated into the phases Fe(B,C) and Fe2(B,C) of the Fe–B–C alloys, but solubility limit forces the remaining solute into the residual liquid. As a result, the globular Cu inclusions are seen in the structure. As compared with copper, nickel has higher solubility in the constituent phases, with preferential solubility observed in the Fe2(B,C) crystals, where Ni occupies Fe positions. Having limited solubility, nickel also forms secondary Ni4B3 phase at the Fe2(B,C) boundaries. Manganese was found to dissolve completely in the Fe–B–C alloys forming substitutional solid solutions preferentially with Fe(B,C) dendrites. By entering into the iron borides structure, Mn and Ni improve their ductility but lower microhardness. The peculiarities in the structure formation and properties of the doped boron-rich Fe–B–C alloys were explained with electronic structure of the alloying elements considered.
References
V. Homolova, L. Ciripova, A. Vyrostkova, Journal of Phase Equilibria and Diffusion 36(6), 599 (2015) (https://doi.org/10.1007/s11669-015-0424-0).
Z.F. Huang, J.D. Xing, S.Q. Ma, Y.M. Gao, M. Zheng, L.Q. Sun, Key Engineering Materials 732, 59 (2017) (https://doi.org/10.4028/www.scientific.net/kem.732.59).
A. Sudo, T. Nishi, N. Shirasu, M. Takano, M. Kurata, Journal of Nuclear Science and Technology 52(10), 1308 (2015) (https://doi.org/10.1080/00223131.2015.1016465).
X. Ren, H. Fu, J. Xing, Y. Yang, S. Tang, Journal of Materials Research 32(16), 304 (2017) (https://doi.org/10.1557/jmr.2017.304).
P. Sang, H. Fu, Y. Qu, C. Wang, Y. Lei, Materialwissenschaft Und Werkstofftechnik 46(9), 962 (2015) (https://doi.org/10.1002/mawe.201500397).
I.М. Spyrydonova, O.V. Sukhova, G.V. Zinkovskij, Metallurgical and Mining Industry 4(4), 2 (2012).
S.I. Ryabtsev, V.А. Polonskyy, О.V. Sukhova, Powder Metallurgy and Metal Ceramics 58(9-10), 567 (2020) (https://doi.org/10.1007/s11106-020-00111-2).
О.V. Sukhova, V.А. Polonskyy, К.V. Ustinоvа, Materials Science 55(2), 285 (2019) (https://doi.org/10.1007/s11003-019-00302-2).
O.V. Sukhova, Y.V. Syrovatko, Metallofizika i Noveishie Tekhnologii 41(9), 1171 (2019) (https://doi.org/10.15407/mfint.41.09.1171).
Z. M. Rykavets, J. Bouquerel, J.-B. Vogt, Z. A. Duriagina, V. V. Kulyk, T. L. Tepla, L. I. Bohun, T. M. Kovbasyuk, Progress in Physics of Metals 20(4), 620 (2019) (https://doi.org/10.15407/ufm.20.04.620).
O.P. Ostash, V.V. Kulyk, T.M. Lenkovskiy, Z.A. Duriagina, V.V. Vira, T.L. Tepla, Archives of Materials Science and Engineering 90(2), 49 (2018) (https://doi.org/10.5604/01.3001.0012.0662).
I.M. Spiridonova, E.V. Sukhovaya, S.B. Pilyaeva, О.G. Bezrukavaya, Metallurgical and Mining Industry 3, 58 (2002).
Z.A. Duriagina, M.R. Romanyshyn, V.V. Kulyk, T.M. Kovbasiuk, A.M. Trostianchyn, I.A. Lemishka, Journal of Achievements in Materials and Manufacturing Engineering 100(2), 49 (2020) (https://doi.org/10.5604/01.3001.0014.3344).
I.M. Spiridonova, O.V. Sukhova, A.P. Vashchenko, Metallofizika i Noveishie Tekhnologii 21(2), 122 (1999).
O.P. Ostash, V.H. Anofriev, I.M. Andreiko, L.A. Muradyan, V.V. Kulyk, Materials Science 48(6), 697 (2013) (https://doi.org/10.1007/s11003-013-9557-7).
Yu.G. Chabak, V.I. Fedun, T.V. Pastukhova, V.I. Zurnadzhy, S.P. Berezhnyy, V.G. Efremenko, Problems of Atomic Science and Technology 110(4), 97 (2017).
S. Egashira, T. Sekiya, T. Ueno, M. Fujii, Mechanical Engineering Journal 6(6), 19 (2019) (https://doi.org/10.1299/mej.19-00297).
M.I. Pashechko, K. Dziedzic, M. Barszcz, Advances in Science and Technology Research Journal 10(31), 194 (2016) (https://doi.org/10.12913/22998624/64020).
K. Lee, M. Choi, G. Lee, M. Kim, J. Kim, IEEE Transactions on Magnetics 1-4, (2018) (https://doi.org/10.1109/tmag.2018.2878292).
L. Sidney, Alloy Steel: Property and Use (Scitus Academics LLC, Wilmington, 2016).
О.V. Sukhova, К.V. Ustinоvа, Functional Materials 26(3), 495 (2019) (https://doi.org/10.15407/fm26.03.495).
J. Miettinen, V.-V. Visuri, T. Fabritius, Archives of Metallurgy and Materials 66(1), 297 (2021) (https://doi.org/10.24425/amm.2021.134787).
W. Shenglin, China Welding 27 (4), 46 (2018) (https://doi.org/10.12073/j.cw.20180603001).
M. Zhang, X. Wang, S. Liu, K. Qu, Journal of Rare Earths 13(5), (2019) (https://doi.org/10.1016/j.jre.2019.05.013).
Z. Chen, S. Miao, L. Kong, X. Wei, F. Zhang, H. Yu, Materials 13(4), 975 (2020) (https://doi.org/0.3390/ma13040975).
K. Niihara, R. Morena, P.H. Hasselman, Journal of Materials Science Letters 1, 13 (1982) (https://doi.org/10.1007/BF00724706).
O.V. Sukhova, Physics and Chemistry of Solid State 21(2), 355 (2020) (https://doi.org/10.15330/pcss.21.2.355-360).
С.J. Smithells, Metals Reference Book (Butterworth and Co., London & Boston, 1976).
G. Li, D. Wang, Journal of Physics of Condensed Matter 1, 1799 (1989).
G.V. Samsonov, I.F. Pryadko, L.F. Pryadko, Electron Localization in Solids (Nauka, Moscow, 1976).