Intercalation of Li Atoms in a SnS2 Anode of Battery: ab initio Calculation

  • Yu.O. Prikhozha Kryvyi Rih State Pedagogical University
  • R.M. Balabai Kryvyi Rih State Pedagogical University
Keywords: anode of battery, Li atoms, SnS2 films, electron density functional, ab initio pseudopotential,, energy reliefs of migration

Abstract

Applying the methods of the functional of electron density and ab initio pseudopotential, we carried out computational experiments, we have obtained the spatial distributions of the density of valence electron, the energy reliefs of migration of Li atoms in the SnS2 interlayer under various degrees of filling of the interlayers spatial of metal atoms. It was established that the motion of Li atoms was accompanied by the overcoming of energy barriers. Barriers depended on the degree of filling of the SnS2 layer with metal atoms. The optimum filling of the SnS2 layer with the Li atoms in 75 % was recorded at which the motion of Li atoms was accompanied by the least energy costs. 

References

G. Crabtree, E. Kocs, L. Trahey, MRS Bull 40, 1067 (2015) (doi: 10.1557/mrs.2015.259).

M. S. Whittingham, Chem. Rev. 104, 4271 (2004) (doi: 10.1021/cr020731c).

B. Diouf, R. Pode, Renewable Energy 76, 375 (2015) (doi:10.1016/j.renene.2014.11.058).

C. M. Hayner, X. Zhao, H. H. Kung, Annu. Rev. Chem. Biomol. Eng. 3, 445 (2012) (doi:10.1146/annurevchembioeng-062011-081024).

M. Thackeray, et. al. Energy Environ 5, 7854 (2012) (doi: 10.1039/C2EE21892E).

J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Adv. Mter. 24, 5166 (2012) (doi:10.1002/adma.201202146).

W. Deng, X. Chen, Z. Liu, A. Hu, O. Tang, Z. Li, Y. Xiong, Power Sources 277, 131 (2015) (doi:10.1007/s40820-018-0200-x).

Y. Zhao, X. Li, B. Yan, D. Li, S. Lawes, X. Sun, Power Sources, 274, 869 (2015).

I. Lefebvre, M. Lannoo, M. e. Moubtassim, J. O. Fourcade, J. C. Jumas, Chem. Mater. 9, 280 (1997) (doi:10.1021/cm960342x).

J.-W. Seo, J.-T. Gang, S.-W. Park, C. Kim, B. Park, J. Cheon, Adv. Mater. 20, 4269 (2008) (doi:10.1002/adma.2007.03122).

C. Zhai, N. Du, H. Yang, Chem. Commun, 47, 1270 (2011) (doi: 10.1039/C0C03023F).

Z. Li, J. Ding, D.Mitlin, Acc. Chem. Res. 16, 1657 (2015) (doi: 10.1021/acs.accounts.5b0014).

S. Chu, Y. Cui, N. Liu, Nat. Mater 16, 16 (2017) (doi: 10.1038/nmat4834).

C. P. Grey, J. M. Tarascon, Nat. Mater. 16, 45 (2017) (doi: 10.1038/nmat4777).

Ab initio calculation [Electronic resource]: Internet portal. Access mode:http://sites.google.com/a/kdpu.edu.ua/calculationphysics/.

W. Kohn, L. J. Sham, Phys. Rev. 140 (4A), A1133 (1965) (doi: 10.1103/PhysRev.140A1133).

P. Hohenberg, W. Kohn, Phes. Rev. 136 (3B), B864 (1964) (doi: 10.1103/PhysRev.136.B864).

R. Dreizler, E. Gross, Density functional theory (1990) (doi: 10.1007/978-3-642-86105-5).

J. Ihm, A. Zunger, M. Cohen, Phys. C: Solid State Phys 12(21), 4409 (1979) (doi: 10.1088/0022-3719/12/21/009).

M. Payne et al., Rev. Mod. Phys. 64(4), 1045 (1992) (doi: 10.1103/RevModPhys.64.1045).

G. Bachelet, D. Hamann, M. Schluter, Phusical Review B26.8, 4199 (1982) (doi: 10.1103/PhysRevB.26.4199).

D. Hamann, M. Schluter, C. Choang, Phusical Review Letters 43.20, 1494 (1979). (doi:10.1103/PhysRevLett.43.1494).

P. Denteneer, W. Haeringen, Phys. Solid State Phys 18, 4127 (1985) (doi: 10.1088/0022-3719/18/21/010).

G. Makov, R. Shah, M. Payne, Phys. Rev B53, 15513 (1996) (doi: 10.113/PhysRevB.53.15513).

D. Chadi, L. Cohen, Phys. Rev. B.12, 5747 (1973) (doi: 10.1103/PhysRevB.8.5747).

Published
2019-07-10
How to Cite
PrikhozhaY., & Balabai R. (2019). Intercalation of Li Atoms in a SnS2 Anode of Battery: ab initio Calculation . Physics and Chemistry of Solid State, 20(2), 120-126. https://doi.org/10.15330/pcss.20.2.120-126
Section
Scientific articles