Effect of magnetic field on the steady nanofluid flow past obstacle


  • Yacine Khelili University of Blida
  • Rafik Bouakkaz University of Blida




Nanofluid, magnetohydrodynamics, volume fraction, Hartmann number


The fluid flow and heat transfer of a nanofluid past a circular cylinder in a rectangular duct under a strong transverse magnetic field is studied numerically using a quasitwo-dimensional model. Transition from laminar flow with separation to creeping laminar flow is determined as a function of Hartmann number and the volume fraction of nanoparticle, as are critical Hartmann number, and the heat transfer from the heated wall to the fluid. Downstream cross-stream mixing induced by the cylinder wake was found to increase heat transfer. The successive changes in the flow pattern are studied as a function of the Hartmann number. Suppression of vortex shedding occurs as the Hartmann number increases.


R. D. Selvakumar, S. Dhinakaran, J. Mol. Liq. 223,572 (2016); https://doi.org/10.1016/j.molliq.2016.08.047.

R. D Selvakumar, & S. Dhinakaran, Intl J. Heat Mass Transfer 115, 282 (2017); https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.103.

Najiyah Safwa Khashi’ie, Iskandar Waini, Nurul Amira Zainal, Khairum Hamzah, and Abdul Rahman Mohd Kasim, Symmetry 12,1493 (2020); https://doi.org/10.3390/sym12091493.

M.S. Valipour, R. Masoodi, S. Rashidi, M. Bovand and M. Mirhosseini, Therm. Sci.18(4),1305 (2014); https://doi.org/10.2298/TSCI121224061V.

M. Vegad, S. Satadia, P. Pradip, P. C hirag, P. Bhargav, Procedia Technol. 14,348 (2014); https://doi.org/10.1016/j.protcy.2014.08.045.

J.C.M. Garnett, Royal Society of London. Series A. Containing Papers of a Math. or Phy. Character 237 (1906); https://doi.org/10.1098/rsta.1906.0007.

M. Sheikholeslami, Seyyed Ali Farshad, Z. Ebrahimpour, Zafar Said, A review, Journal of Cleaner Production 293,126119 (2021); https://doi.org/10.1016/j.jclepro.2021.126119.

R.T.H. Bing, H.A. Mohammed, J. Purity, Util. React. Environ. 1,435 (2012).

V. Etminan-Farooji, E. Ebrahimnia-Bajestan, H. Niazmand, S. Wongwises, Int. J. Heat Mass Transf. 55(5),1475 (2012); https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.030.

A.J. Chamkha, A.M. Rashad, A.M. Aly, Meccanica 48 (1), 71 (2013); https://doi.org/10.1007/s11012-012-9584-8).

M. Sheikholeslami,Seyyed Ali Farshad,Zafar Said, Int. Com. in Heat and Mass Tran, 123,105190 (2021); https://doi.org/10.1016/j.icheatmasstransfer.2021.105190.

S. Sarkar, S. Ganguly, G. Biswas, Int. J. Heat Mass Transf. 55(17), 4783 (2012); https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.046.

S. Sarkar, S. Ganguly, A. Dalal, Int. J. Heat Mass Transf. 59, 433 (2013); https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.032.

S. Sarkar, S. Ganguly, A. Dalal, P. Saha, S. Chakraborty, Int. J. Heat Fluid Flow 44, 624 (2013); https://doi.org/10.1016/j.ijheatfluidflow.2013.09.004.

S. Sarkar , S. Ganguly, A. Dalal, J. Heat Transf. 136(6),062501 (2014); https://doi.org/10.1115/1.4026470.

Y. Kolesnikov and A. Tsinober9, 621 (1974); https://doi.org/10.1007/BF01031323.

G. Mutschke, V. Shatrov and G. Gerbeth, Exper. Thermal and Fluid Science16, 92 (1998); https://doi.org/10.1016/S0894-1777(97)10007-3.

M. M. Bhatti, A. Riaz and R. Ellahi, M. Sheikholeslami, Journal of Porous Media 17, 143 (2014); https://doi.org/10.1615/JPorMedia.v17.i2.50.

N. Sher Akbar, M. Raza and R. Ellahi Magnetism and Magnetic Materials 381, 405 (2015); https://doi.org/10.1016/j.jmmm.2014.12.087.

K. Sheikholeslami and R. Ellahi, J. of Zeitschrift Fur Naturforschung A 70,115 (2015); https://doi.org/10.1515/zna-2014-0258.

H.S. Yoon, H.H. Chun, M.Y. Ha and H.G. Lee, Int. J. of Heat and Mass Transfer 47, 4075 (2004); https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.015.

D. G. E. Grigoriadis, I. E. Sarris and S. C. Kassinos, Computers & Fluids 39,345 (2010); https://doi.org/10.1016/j.compfluid.2009.09.012.

D. Chatterjee and B. Mondal, Int. J. of Heat and Mass Transfer 54, 5262 (2011); https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.016.

W.K. Hussam, M.C. Thompson and G.J. Sheard, Int. J. of Heat and Mass Transfer 54, 1091 (2011); https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.013.

D. Chatterjee, K. Chatterjee, B. Mondal, Journal of Fluids Engineering 134,091102 (2012); https://doi.org/10.1115/1.4007316.

Y. Khelili, A. Allali, R. Bouakkaz, Engineering Review 39, 261 (2019); https://doi.org/10.30765/er.39.3.07.

M. Linnick, H. Fasel, J. Comput. Phys. 204,157 (2005); https://doi.org/10.30765/er.39.3.07.

M. Coutanceauand R. Bouard, J. Fluid Mech, 79,231 (1977); https://doi.org/10.1017/S0022112077000135.

Y. Khelili, A. Allali and R. Bouakkaz, Metallurgical and Materials Engineering 23, 83 (2017); https://doi.org/10.30544/242 .

K. Taira, T. Colonius, J. Comp. Phys. 225, 2118 (2007); https://doi.org/10.1016/j.jcp.2007.03.005.

R. Gautier, D. Biau, E.Lamballais, Computers & Fluids 75, 103 (2013) ; https://doi.org/10.1016/j.compfluid.2012.12.017.

Bouchon, T. Dubois, N. James, Comp & Flu. 65, 80 (2012); https://doi.org/10.1016/j.compfluid.2012.02.011.

Khelili, A. Allali, R. Bouakkaz, Sudia UBB Chemia, LXIII, 1, 239 (2018) ; https://doi.org/10.24193/subbchem.2018.1.17.




How to Cite

Khelili, Y., & Bouakkaz, R. (2021). Effect of magnetic field on the steady nanofluid flow past obstacle. Physics and Chemistry of Solid State, 22(3), 535–542. https://doi.org/10.15330/pcss.22.3.535-542



Scientific articles (Physics)