Nanostructures on the ZnSe Surface: Synthesis, Morphological and Photoluminescent Properties

Authors

  • Y. Suchikova Berdyansk State Pedagogical University
  • A. Lazarenko Berdyansk State Pedagogical University
  • S. Kovachov Berdyansk State Pedagogical University
  • I. Bohdanov Berdyansk State Pedagogical University

DOI:

https://doi.org/10.15330/pcss.22.4.614-620

Keywords:

porous ZnSe, electrochemical etching, photoluminescence, morphology, nanostructures, electrolyte

Abstract

Nanostructured zinc selenide has been obtained by electrochemical etching with an H2SO4:H2O:H2O5OH=4:1:1 solution used as the electrolyte. The experiment has indicated that the surface consists of two phases, namely the upper layer made up of a dense oxide film and a low-sized porous layer underneath, with a pore diameter of (30-80) nm and a thickness of interporous walls of (15-50) nm. The investigated dependence of surface porosity on the etching time allows us to explain the main stages of the crystal’s electrochemical dissolution during anodizing. The experiment has indicated the presence of three main stages, such as the formation of the Gouy and Helmholtz layers at the semiconductor/electrolyte segregation; pore formation at defect and oxide crystallite locations; spontaneous pore formation. The PL spectra of the samples under study have demonstrated three maxima. The emission band at 2.45 eV is attributable to the presence of oxides, the band at 2.78 EV can be accounted for the corresponding excitons while the band at 2.82 eV stems from quantum-dimensional effects. Chemical analysis of the samples has also indicated the presence of oxides on the surface of the nanostructure.

References

Y.O. Sychikova, I.T. Bogdanov, S.S. Kovachov, Functional Materials 27(1), 29 (2019); https://doi.org/10.15407/fm27.01.29.

S. Vambol, I. Bogdanov, V.Vambol, S. Onishchenko, Eastern-European Journal of Enterprise Technologies 3(5-87), 37 (2017); https://doi.org/10.15587/1729-4061.2017.104039.

V. Petrova‐Koch, T. Muschik, A. Kux, B. K. Meyer, F. Koch, V. Lehmann, Applied physics letters 61(8), 943 (1992); https://doi.org/10.1063/1.107736.

Y. Suchikova, Eastern-European Journal of Enterprise Technologies, 6(5), 33 (2016); https://doi.org/10.15587/1729-4061.2016.85848.

A. El-Denglawey, M.M. Makhlouf, M. Dongol, Results in Physics 10, 714 (2018); https://doi.org/10.1016/j.rinp.2018.07.023.

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, R. Turan, Journal of Applied Physics 103(11), 113518 (2008); https://doi.org/10.1063/1.2924417.

S. Takagi, R. Zhang, J. Suh, S. H. Kim, M. Yokoyama, K. Nishi, M. Takenaka, Japanese Journal of Applied Physics, 54(6S1), 06FA01 (2015); https://doi.org/10.7567/JJAP.54.06FA01.

G. Niu, G. Capellini, M. A. Schubert, T. Niermann, P. Zaumseil, J. Katzer, T. Schroeder, Scientific reports 6(1), 1 (2016); https://doi.org/10.1038/srep22709.

Y. Suohikova, S. Vambol, V. Vambol, N. Mozaffari, N. Mozaffari, Journal of Achievements in Materials and Manufacturing Engineering 92(1-2), 19 (2019); https://doi.org/10.5604/01.3001.0013.3184.

M. Yazdchi, A. A. Foroughi, S. Talatahari, A. H. Gandomi, Applied Sciences 11(6), 2529 (2021); https://doi.org/10.3390/app11062529.

Y.A. Sychikova, V.V. Kidalov, G.A. Sukach, Journal of Surface Investigation 7(4), 626 (2013); https://doi.org/10.1134/S1027451013030130.

Y.O. Suchikova, Journal of Nano- and Electronic Physics 9(1), 01006 (2017); https://doi.org/10.21272/jnep.9(1).01006.

D.Q. Tran, M.E. Islam, K. Higashimine, M. Akabori, Journal of Crystal Growth 564, 126126 (2021); https://doi.org/10.1016/j.jcrysgro.2021.126126.

S. Vambol, I. Bogdanov, V. Vambol, N. Tsybuliak, Eastern-European Journal of Enterprise Technologies 6(5-90), 22 (2017); https://doi.org/10.15587/1729-4061.2017.118725.

J. Sabataityt, I. Šimkien, A. N. Baranov, R. A. Bendorius, V. Pačebutas, Materials Science and Engineering: C 23(1-2), 43 (2003); https://doi.org/10.1016/S0928-4931(02)00223-0.

S. Vambol, V. Vambol, Y. Suchikova, I. Bogdanov, O. Kondratenko, Journal of Achievements in Materials and Manufacturing Engineering 86(2), 49 (2018); https://doi.org/10.5604/01.3001.0011.8236.

V. Sergentu, D. Esinenco, L. Sirbu, I. Vodä, International Workshop Terahertz and Mid Infrared Radiation: Basic Research and Practical Applications (IEEE, Marmaris, Mugla, Turkey, 2009); https://doi.org/10.1109/TERAMIR.2009.5379611.

V.P. Makhnij, I.I. German, V.M. Sklarchuk, Telecommunications and Radio Engineering 74(16) (2015); https://doi.org/10.1615/TelecomRadEng.v74.i16.60.

A. Salehi, A. Nikfarjam, D. J. Kalantari, Sensors and Actuators B: Chemical 113(1), 419 (2006); https://doi.org/10.1016/j.snb.2005.03.064.

T. Sato, X. Zhang, K. Ito, S. Matsumoto, Y. Kumazaki, IEEE SENSORS (IEEE, Glasgow, Scotland 2016); https://doi.org/10.1109/ICSENS.2016.7808443.

Y.O. Suchikova, Bogdanov, S.S. Kovachov, Kamensky, N.Y. Panova, Archives of Materials Science and Engineering 101(1), 15 (2020); https://doi.org/10.5604/01.3001.0013.9502.

T. Sato, N. Yoshizawa, T. Hashizume, Thin Solid Films 518(15), 4399 (2010); https://doi.org/10.1016/j.tsf.2010.02.029.

H.J. Joyce, C.J. Docherty, Q. Gao, Tan, M.B. Johnston, Nanotechnology 24(21), 214006 (2013); https://doi.org/10.1088/0957-4484/24/21/214006.

J.A. Suchikova, Journal of Nano- and Electronic Physics 7(3), 03017, 2015.

A. Usseinov, Z. Koishybayeva, A. I. Popov, Latvian Journal of Physics and Technical Sciences 58(2), 3 (2021); https://doi.org/10.2478/lpts-2021-0007.

M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas, D. Zheng, P. D. Ye, Nano Letters 21(1), 500 (2020); https://doi.org/10.1021/acs.nanolett.0c03967.

A. Di Mauro, M. E. Fragala, V. Privitera, G. Impellizzeri. Materials Science in Semiconductor Processing 69, 44 (2017); https://doi.org/10.1016/j.mssp.2017.03.029.

V. Serga, R. Burve, A. Krumina, M. Romanova, A.I. Popov, Crystals 11(4), 431 (2021); https://doi.org/10.3390/cryst11040431.

E. Shablonin, A. I. Popov, G. Prieditis, E. Vasil'chenko, A. Lushchik, Journal of Nuclear Materials 543, 152600 (2021); https://doi.org/10.1016/j.jnucmat.2020.152600.

R. Balakhayeva, A. Akilbekov, Baimukhanov, A. Dauletbekova, Physica Status Solidi (a), 218(1), 2000231, (2021); https://doi.org/10.1002/pssa.202000231.

O.V. Bogdankevich, M.M. Zverev, A.I. Krasilnikov, A.N. Pechenov, Physica Status Solidi B Basic Research 19(1), K5 (1967); https://doi.org/10.1002/pssb.19670190148.

I.V. Rogozin, Thin Solid Films 517(15), 4318 (2009); https://doi.org/10.1016/j.tsf.2008.12.002.

D. Rehani, S. Bishnoi, M. Saxena, D. Haranath, V. Gupta, S. N. Sharma, Journal of Physics and Chemistry of Solids 143, 109460 (2020); https://doi.org/10.1016/j.jpcs.2020.109460.

G. Khrypunov, S. Vambol, N. Deyneko, Eastern-European Journal of Enterprise Technologies 6(5), 12 (2016); https://doi.org/10.15587/1729-4061.2016.85617.

A.S. Nasibov, V.G. Bagramov, K.V. Berezhnoi, P.V. Shapkin, Bulletin of the Lebedev Physics Institute 40(4), 97 (2013); https://doi.org/10.3103/S1068335613040040.

K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy, A.N. Mallika, Journal of Advanced Ceramics 2(3), 260 (2013); https://doi.org/10.1007/s40145-013-0069-6.

E. Monaico, I.M. Tiginyanu, V.P. Sirkeli, Semiconductor science and technology 22(10), 1115 (2007); https://doi.org/10.1088/0268-1242/22/10/007.

E. Monaico, P. Tighineanu, I. Tiginyanu, Physica Status Solidi 3(4), 97 (2009); https://doi.org/10.1002/pssr.200903026.

Y. Suchikova, I. Bogdanov, S. Kovachov, N. Tsybuliak, N. Panova, Nanosistemi, Nanomateriali, Nanotehnologii 18(4), 875 (2020); https://doi.org/10.15407/nnn.18.04.875.

T.V. L'vova, I.V. Sedova, Ulin, S.V. Ivanov, Vacuum 57(2), 163 (2000); https://doi.org/10.1016/S0042-207X(00)00114-7.

V.P. Ulin, S.G. Konnikov, Semiconductors 41(7), 832 (2007); https://doi.org/10.1134/S1063782607070111.

K.Yoshino, H. Mikami, K. Imai, T. Ikari, Physica B: Condensed Matter. 302, 299 (2001); https://doi.org/10.1016/S0921-4526(01)00444-6.

M. Heuken, J.Söllner, F. E. G. Guimaraes, K. Marquardt, K. Heime, Journal of crystal growth 117(1-4), 336 (1992); https://doi.org/10.1016/0022-0248(92)90771-A.

R. Baltramiejūnas, V.D. Ryzhikov, V. Stepankevičius, Journal of luminescence 52(1-4), 71 (1992); https://doi.org/10.1016/0022-2313(92)90234-Z.

V.M. Asnin, N.S. Averkiev, A.B. Churilov, I.I. Markov, Solid state communications 87(9), 817 (1993); https://doi.org/10.1016/0038-1098(93)90421-I.

N.S. Averkiev, L.P. Kazakova, É.A. Lebedev, N.N. Smirnova, Semiconductors 34(6), 732 (2000); https://doi.org/10.1134/1.1188063.

Published

2021-11-10

How to Cite

Suchikova, Y., Lazarenko, A., Kovachov, S., & Bohdanov, I. (2021). Nanostructures on the ZnSe Surface: Synthesis, Morphological and Photoluminescent Properties. Physics and Chemistry of Solid State, 22(4), 614–620. https://doi.org/10.15330/pcss.22.4.614-620

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)