Electronic structure and Thermoelectric Properties of Hybrid Organic-Inorganic Perovskites [NH3-(CH2)3-COOH]2CdCl4

  • Elmustafa Ouaaka University Moulay Ismail
  • Said Kassou Chung Yuan Christian University
  • Mahmoud Ettakni University Moulay Ismail
  • Salaheddine Sayouri USMBA
  • Ahmed Khmou University Moulay Ismail
  • El Mostafa Khechoubi University Moulay Ismail
Keywords: Hybrid organic inorganic, Band structure, Density of states, Gap energy, Electrical conductivity, Seebeck coefficient, Figure of merit

Abstract

In this work, we conducted the first principle calculation of electronic structure and transport properties of [NH3-(CH2)3-COOH]2CdCl4 (Acid-Cd). The generalized gradient approximation is used in structural optimization and electronic structure. The theoretical band gap value found is in good agreement with experimental. Electronic thermal conductivity, electrical conductivity, Seebeck coefficient (S) and figure of merit (ZT) have been calculated using semi-local Boltzmann theory to predict the thermoelectric characteristic of the studied materials.

References

T.J. Seebeck, Proc. Prussian Acad. Sci. 265 (1822).

J. Mao, H. Zhu, Z. Ding, Z. Liu, Gamage. G.A., Chen. G., Ren Z., Science 365(6452), 495 (2019); https://doi.org/10.1126/science.aax7792.

Y. Pei, X. Shi., A. LaLonde., H. Wang., L. Chen, G.J. Snyder, Nature 473(7345), 66 (2011); https://doi.org/10.1038/nature09996.

W. Liu, X. Shi, R. Moshwan, M. Hong, L. Yang, Z.G. Chen, J. Zou, Sustainable Materials and Technologies 17, p.e00076 (2018); https://doi.org/10.1016/j.susmat.2018.e00076.

M. Hong, K. Zheng, W. Lyv, M. Li, X. Qu., Q. Sun., S. Xu., J. Zou, Z.G. Chen,Energy & Environmental Science 13(6), 1856 (2020); https://doi.org/10.1039/D0EE01004A.

X. Shi, Z.G. Chen, W. Liu, L. Yang, M. Hong, R. Moshwan., L. Huang, J. Zou, Energy Storage Materials 10, 130 (2018); https://doi.org/10.1016/j.ensm.2017.08.014.

A. Suwardi, J. Cao, Y. Zhao, J. Wu, S.W. Chien., X.Y. Tan, L. Hu, X. Wang., W. Wang, D. Li, Y. Yin, Materials Today Physics 14, 100239 (2020); https://doi.org/10.1016/j.mtphys.2020.100239.

M. Hong, Z.G. Chen, J. Zou, Chinese Physics B 27(4), 048403 (2018); https://doi.org/10.1088/1674-1056/27/4/048403.

Y. Zhang, Park. S.J. Polymers, 11(5), 909 (2019); https://doi.org/10.3390/polym11050909.

M. Bharti, A. Singh, S. Samanta, D.K. Aswal, Progress in Materials Science 93, 270 (2018); https://doi.org/10.1016/j.pmatsci.2017.09.004.

Y. Du., J. Xu, B. Paul, P. Eklund, Applied Materials Today 12, 366 (2018); https://doi.org/10.1016/j.apmt.2018.07.004.

X.L. Shi, J. Zou, Z.G. Chen, Chemical Reviews 120(15), 7399 (2020); https://doi.org/10.1021/acs.chemrev.0c00026.

L. Zhang, S. Lin, T. Hua, B. Huang, S. Liu, X. Tao, Advanced Energy Materials 8(5), 1700524 (2018); https://doi.org/10.1002/aenm.201700524.

K.I. Sakai, M. Takemura, Y. Kawabe, Journal of luminescence 130(12), 2505 (2010); https://doi.org/10.1016/j.jlumin.2010.08.026.

K. Pradeesh, G.S. Yadav, M. Singh, G.V. Prakash, Materials Chemistry and Physics 124(1), 44 (2010) https://doi.org/10.1016/j.matchemphys.2010.07.037.

M. Bujak, J. Zaleski, Crystal Engineering 4(2-3), 241 (2001); https://doi.org/10.1016/S1463-0184(01)00018-1.

K. Karoui, A.B. Rhaiem, K. Guidara, Physica B: Condensed Matter. 407(3), 489 (2012); https://doi.org/10.1016/j.physb.2011.11.021.

M. Zdanowska-Frączek, K. Hołderna-Natkaniec, Z.J. Frączek, R. Jakubas, Solid State Ionics 180(1), 9 (2009); https://doi.org/10.1016/j.ssi.2008.10.018.

I. Chaabane, F. Hlel, K. Guidara, Journal of alloys and compounds 461(1-2), 495 (2008); https://doi.org/10.1016/j.jallcom.2007.07.031.

A.K. Vishwakarma, P.S. Ghalsasi, A. Navamoney, Y. Lan, A.K. Powell, Polyhedron 30(9), 1565 (2011); https://doi.org/10.1016/j.poly.2011.03.025.

C. Aruta, F. Licci, A. Zappettini, F. Bolzoni, F. Rastelli, P. Ferro, T. Besagni, Applied Physics A 81(5), 963 (2005); https://doi.org/10.1007/s00339-004-3102-3.

D.B. Mitzi, K. Chondroudis, C.R. Kagan, IBM journal of research and development 45(1), 29 (2001); https://doi.org/10.1147/rd.451.0029.

D.B. Mitzi, Journal of the Chemical Society, Dalton Transactions (1), 1 (2001); https://doi.org/10.1039/B007070J.

X. Qian, X. Gu, R. Yang, Applied Physics Letters 108(6), 063902 (2016); https://doi.org/10.1063/1.4941921.

C. Lee, J. Hong, A. Stroppa, M.H. Whangbo, J.H. Shim, Rsc Advances 5(96), 78701 (2015); https://doi.org/10.1039/C5RA12536G.

X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, Computer Physics Communications 180(12), 2582 (2009); https://doi.org/10.1016/j.cpc.2009.07.007.

X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah. F. Jollet, M. Torrent, Computational Materials Science 25(3), 478 (2002); https://doi.org/10.1016/S0927-0256(02)00325-7.

J.P. Perdew, K. Burke, M. Ernzerhof, Physical review letters 77(18), 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

P. Hohenberg, W. Kohn, Physical review 136(3B), B864 (1964); https://doi.org/10.1103/PhysRev.136.B864.

W. Kohn, L.J. Sham, Physical review 140(4A), A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133.

H.J. Monkhorst, J.D. Pack, Physical review B 13(12), 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.

G.K. Madsen, D.J. Singh, Computer Physics Communications 175(1), 67 (2006); https://doi.org/10.1016/j.cpc.2006.03.007.

M. Ettakni, A. Kaiba, J. Aazza, F. Haiki and M. Khechoubi, Journal of Asian Scientific Research 5(9), 473 (2015); https://doi.org/10.18488/journal.2/2015.5.9/2.9.473.481.

M.B. AlShammari, A. Kaiba, P. Guionneau, M.H. Geesi, T. Aljohani, Y. Riadi, Chemical Physics Letters 702, 8 (2018); https://doi.org/10.1016/j.cplett.2018.04.051.

K. Karoui, Journal of Molecular Structure 1203, 127430 (2020); https://doi.org/10.1016/j.molstruc.2019.127430.

Q. Wang,M. Ma, K. Cui, Y. Li, X. Wu, Journal of Alloys and Compounds 854, 157187 (2021); https://doi.org/10.1016/j.jallcom.2020.157187.

J. Sun, D.J. Singh, Physical Review Applied 5(2), 024006 (2016); https://doi.org/10.1103/PhysRevApplied.5.024006.

X. Luo, M.B. Sullivan, S.Y. Quek, Physical Review B 86(18), 184111 (2012); https://doi.org/10.1103/PhysRevB.86.184111.

Published
2021-12-15
How to Cite
[1]
OuaakaE., KassouS., EttakniM., SayouriS., KhmouA. and KhechoubiE.M. 2021. Electronic structure and Thermoelectric Properties of Hybrid Organic-Inorganic Perovskites [NH3-(CH2)3-COOH]2CdCl4. Physics and Chemistry of Solid State. 22, 4 (Dec. 2021), 750-755. DOI:https://doi.org/10.15330/pcss.22.4.750-755.
Section
Scientific articles (Physics)