Elastic, Mechanical and Thermophysical properties of Single-Phase Quaternary ScTiZrHf High-Entropy Alloy

Authors

  • Sachin Rai Veer Bahadur Singh Purvanchal University
  • Navin Chaurasiya Veer Bahadur Singh Purvanchal University
  • Pramod K. Yadawa Veer Bahadur Singh Purvanchal University

DOI:

https://doi.org/10.15330/pcss.22.4.687-696

Keywords:

high entropy alloy, ultrasonic properties, thermal conductivity, elastic properties

Abstract

Consequent to the interaction potential model, the high-order elastic constants at high entropy alloys in single-phase quaternary ScTiZrHf have been calculated at different temperatures. Elastic constants of second order (SOECs) helps to determine other ultrasonic parameters. With the help of SOECs other elastic moduli, bulk modulus, shear modulus, Young’s modulus, Pugh’s ratio, elastic stiffness constants and Poisson’s ratio are estimated at room temperature for elastic and mechanical characterization. The other ultrasonic parameters are calculated at room temperature for elastic and mechanical characterization. The temperature variation of ultrasonic velocities along the crystal's z-axis is evaluated using SOECs. The temperature variation of the  average debye velocity and the thermal relaxation time (τ) are also estimated along this orientation axis. The ultrasonic properties correlated with elastic, thermal and mechanical properties which is temperature dependent is also discussed. The ultrasonic attenuation due to phonon – phonon (p-p) interactions is also calculated at different temperatures. In the study of ultrasonic attenuation such as a function of temperature, thermal conductivity appears to be main contributor and p- p interactions are the responsible reason of attenuation and found that the mechanical properties of the high entropy alloy ScTiZrHf are superior at room temperature.

References

J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(5), 299 (2004); https://doi.org/10.1002/adem.200300567.

B. CantorI, T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. 375-377, 213 (2004) https://doi.org/10.1016/j.msea.2003.10.257.

S.G. Ma, Y. Zhang, Prog. Mater. Sci. 61, 1 (2014); https://doi.org/10.1016/j.pmatsci.2013.10.001.

M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, Y. (Eds.), 1sted Springer International Publishing, Cham (2016); https://www.springer.com/gp/book/9783319270111.

Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Eutectic high- entropy alloys, Sci. Rep. 4, 1 (2014); https://doi.org/10.1038/srep06200.

Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta. Mater 124, 143. (2017); https://doi.org/10.1016/j.actamat.2016.11.016.

O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci. 47(9), 4062 (2012); https://doi.org/10.1007/s10853-012-6260-2.

M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, Metall. Mater. Trans. A 47A, 3322 (2016); https://doi.org/10.1007/s11661-015-3091-1.

M. Feuerbacher, M. Heidelmann, C. Thomas, Mater. Res. Lett. 3, 1 (2015); https://doi.org/10.1080/21663831.2014.951493.

A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 66(10), 1984 (2014); https://doi.org/10.1007/s11837-014-1085-x.

S. Guo, C.T. Liu, Prog.Nat.Sci.Mater Int. 21, 433 (2011); https://doi.org/10.1016/S1002-0071(12)60080-X.

Y. Zhang, T.T. Zuo, Y.Q. Cheng, P.K. Liaw, Sci Rep. 3, 1455 (2013); https://doi.org/10.1038/srep01455.

Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007); https://doi.org/10.1063/1.2734517.

S. Liu, M.C. Gao, P.K. Liaw, Y. Zhang, J. Alloys Compd. 619, 610 (2015); https://doi.org/10.1016/j.jallcom.2014.09.073.

M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59, 6308 (2011); https://doi.org/10.1016/j.actamat.2011.06.041.

M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, Switzerland (Springer International Publishing, 2016).

Y.L. Chen, C.W. Tsai, C.C. Juan, M.H. Chuang, J.W. Yeh, T.S. Chin, S.K. Chen, J Alloys Compd. 506, 210 (2010); https://doi.org/10.1016/j.jallcom.2010.06.179.

M. Krnel, S. Vrtnik, A. Jelen, P. Kozelj, Z. Jaglicic, A. Meden, M. Feuerbacher, J. Dolinsek, Intermetallics 117, 106680 (2020); https://doi.org/10.1016/j.intermet.2019.10668.

Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Mater. Res. Lett. 6(4), 236 (2018); https://doi.org/10.1080/21663831.2018.1434250.

Y. Zhao, J. Qiao, S. Ma, M. Gao, H. Yang, M. Chen, Y. Zhang. Mater. Des. 96, 10 (2016); https://doi.org/10.1016/j.matdes.2016.01.149.

J.W. Qiao, M.L. Bao, Y. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang, J.A. Hawk, M.C. Gao, J. Appl. Phys. 124(19), 195101 (2018); https://doi.org/10.1063/1.5051514.

E. Mirmahdi, Russian Journal of Nondestructive Testing, 56, 853 (2020); https://doi.org/10.1134/S1061830920100058.

P.K. Yadawa, Pramana-J. Phys.76(4), 613 (2011); https://doi.org/10.1007/s12043-011-0066-7.

A.I. Potapov, A.V. Kondrat’ev, Ya.G. Smorodinskii, Russian Journal of Nondestructive Testing 55, 434 (2019); https://doi.org/10.1134/S106183091906007X.

A.K. Jaiswal, P.K. Yadawa, R.R. Yadav, Ultrasonics 89, 22 (2018); https://doi.org/10.1016/j.ultras.2018.04.009.

D.K. Pandey, P.K. Yadawa, R.R. Yadav, Mater. Lett. 61, 5194 (2007); https://doi.org/10.1016/j.matlet.2007.04.028.

W. Voigt, Lehrbuch der kristallphysik (mitausschluss der kristalloptik) (Leipzig Berlin, B.G. Teubner, 1928).

A. Reuss. ZAMM–Journal of Applied Mathematics and Mechanics/ZeitschriftfürAngewandteMathematik und Mechanik 9, 49 (1929); http://dx.doi.org/10.1002/zamm.19290090104.

R. Hill. Proc. Phys. Soc, A. 65, 349 (1952); https://doi.org/10.1088/0370-1298/65/5/307.

N. Turkdal, E. Deligoz, H. Ozisik, H.B. Ozisik, Ph. Transit. 90, 598 (2017); https://doi.org/10.1080/01411594.2016.1252979.

F. Philippe, E.W. Weck, T. Veena, A. John, Dalton Trans. 44, 18769 (2015); https://doi.org/10.1039/c5dt03403e.

N. Yadav, S.P. Singh, A. K. Maddheshiya, P.K. Yadawa and R.R Yadav, Phase Transitions 93, 883 (2020); https://doi.org/10.1080/01411594.2020.1813290.

D. Singh, D.K. Pandey, P.K. Yadawa, A.K. Yadav, Cryogen. 49, 12 (2009); https://doi.org/10.1016/j.cryogenics.2008.08.008.

D. Singh, P.K. Yadawa, S.K. Sahu, Cryogen. 50, 476 (2010); https://doi.org/10.1016/j.cryogenics.2010.04.005.

S. Uporov, S.K. Estemirova, V.A. Bykov, D.A. Zamyatin, R.E. Ryltsev, Intermetallics 122, 106802 (2020); https://doi.org/10.1016/j.intermet.2020.106802.

K.V. Petrov, O.V. Murav’eva, Yu.V. Myshkin, A.F. Basharova, Russian Journal of NondestructiveTesting, 55, 102 (2019); https://doi.org/10.1134/S1061830919020062.

R.I. Romanishin, I.M. Romanishin, M.M. Student, V.M. Gvozdetskii, B.P. Rusin, G.I. Romanishin, V.V. Koshevoi, S.I. Semak, R.E. Krygul, Russian Journal of Nondestructive Testing, 54, 479 (2018); https://doi.org/10.1134/S1061830918070069.

P.K. Yadawa, The Arabian Journal for Science and Engineering 37, 255 (2012); https://doi.org/10.1007/s13369-011-0153-6.

P.K. Yadawa, Adv. Mat. Lett, 2(2), 157 (2011); https://doi.org/10.5185/amlett.2010.12190.

C.P. Yadav, D.K. Pandey and D. Singh, Indian J. Phys. 93, 1147 (2019); https://doi.org/10.1007/s12648-019-01389-8.

D.K. Pandey, P.K. Yadawa and R.R. Yadav, Mat. Lett. 61, 4747 (2007); https://doi.org/10.1016/j.matlet.2007.03.031.

S.P. Singh, G. Singh, A.K. Verma, P.K. Yadawa, R.R. Yadav, Pramana-J. Phys. 93, 83 (2019); https://doi.org/10.1007/s12043-019-1846-8.

P.K. Yadawa, Ceramics-Silikaty 55, 127 (2011); https://www.ceramics-silikaty.cz/2011/2011_02_127.htm.

Downloads

Published

2021-11-19

How to Cite

Rai, S., Chaurasiya, N., & Yadawa, P. K. (2021). Elastic, Mechanical and Thermophysical properties of Single-Phase Quaternary ScTiZrHf High-Entropy Alloy. Physics and Chemistry of Solid State, 22(4), 687–696. https://doi.org/10.15330/pcss.22.4.687-696

Issue

Section

Scientific articles (Physics)