Cross-linked composite proton conductive membranes
DOI:
https://doi.org/10.15330/pcss.22.4.775-780Keywords:
2-acrylamido-2-methylpropane sulfonic acid, UV-curing, sol-gel system, proton conductive membrane, fuel cellAbstract
Using UV-curing technique the proton conductive polymer materials based on acrylic monomers: 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylic acid (AA) and acrylonitrile (AN), cross-linked by varying amounts of N,N'-methylene(bis)acrylamide (MBA), and the hybrid polymer/inorganic membrane of the same content with addition of sol-gel system (SGS) based on 3-methacryloxypropyl trimethoxysilane (MAPTMS) and tetraethoxysilane (TEOS) were synthesized. The obtained materials were characterized by analysis of thermal, mechanical and morphological properties. Proton conductivity and water uptake were found to depend on the level of cross-linking of the materials. The value of proton conductivity of the hybrid membrane was sufficiently high reaching 3.46 × 10-2 S cm-1.
References
J. M. Andújar, F. Segura, Renewable and Sustainable Energy Reviews 13, 9 (2009) https://doi.org/10.1016/j.rser.2009.03.015.
L. Fan, Z. Tu, S. H. Chan, Energy Reports 7, (2021) https://doi.org/10.1016/j.egyr.2021.08.003.
M. A. Abdelkareem, K. Elsaid, T. Wilberforce and et. al., Science of The Total Environment 752, 15 (2021) https://doi.org/10.1016/j.scitotenv.2020.141803.
N. Esmaeili, E. MacA. Gray, C. J. Webb, Chem Phys Chem 20, 16 (2019) https://doi.org/10.1002/cphc.201900191.
L. Ahmadian-Alam, M. Kheirmand, H. Mahdavi, Chemical Engineering Journal 284, (2016) https://doi.org/10.1016/j.cej.2015.09.048.
H. Pei, L. Hong, J. Y. Lee, Journal of Power Sources 160, 2, (2006) https://doi.org/10.1016/j.jpowsour.2006.03.028.
Y.P. Ying, S.K. Kamarudin, M.S. Masdar, International Journal of Hydrogen Energy 43, 33 (2018) https://doi.org/10.1016/j.ijhydene.2018.06.171.
H. Kim, G. P. Marks, C. Piedrahita, Search Rad Tech (2010) (Proceedings URL: http://www.radtech.org/proceedings/2010/papers/1430.pdf.
M. Sangermano, Pure and Applied Chemistry 84, 10 (2012) https://doi.org/10.1351/PAC-CON-12-04-11.
M.M. Zhyhailo, I.Yu. Yevchuk, Journal of Chemistry and Technologies 29, 1 (2021) https://doi.org/10.15421/082109.
J. Jang, H. Park, Journal of Applied Polymer ScienceVolume 83, 8 (2002) https://doi.org/10.1002/app.10116.
U. L. Stangar, A. Sassi, A. Venzo and et. al., Journal of Sol-Gel Science and Technology 49, 3 (2009) https://doi.org/10.1007/s10971-008-1882-1.
H. Yahyaei, M. Mohseni, S. Bastani, Journal of Sol-Gel Science and Technology 59, 1 (2011) https://doi.org/10.1007/s10971-011-2466-z.
S.-L. Huang, W.-K. Chin, W.P. Yang, Polymer 46, 6 (2005) https://doi.org/10.1016/j.polymer.2004.12.052.
R. Joseph, S. Zhang, W.T. Ford, Macromolecules 29, 4 (1996) https://doi.org/10.1021/ma951111z1305.
G.P. Habsuda, Y.B. Simon, D.G. Cheng and et. al., Polymer 43, 15 (2002) https://doi.org/10.1016/S0032-3861(02)00209-4). 4123.
T.L. Kalapos, B. Decker, H.A. Every and et. al., Journal of Power Sources 172, 1 (2007) https://doi.org/10.1016/j.jpowsour.2007.04.082.
M. Nogami, R. Nagao, C. Wong, Journal Phys. Chem. B, 102, (1998) https://doi.org/10.1021/jp981059j.
M.M. Zhyhailo, O.I. Demchyna, I.Yu. Yevchuk and et. al., Issues of Chemistry and Chemical Technology 5, (2019) http://dx.doi.org/10.32434/0321-4095-2019-126-5-34-41.