Sound Velocities in Graphene-Based Epoxy Nanocomposites

Authors

  • A.B. Nadtochiy Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • B.M. Gorelov Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • O.I. Polovina Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • S.V. Shulga Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv, Ukraine
  • O.O. Korotchenkov Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • A.M. Gorb Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.2.328-334

Keywords:

multi-layered graphene nanoplatelets, anatase nanoparticles, epoxy-based nanocomposites resin, ultrasound probing, elastic moduli

Abstract

Elastic properties of epoxy-based nanocomposites (ENCs) filled with bare and TiO2-deposied multi-layered graphene nanoplatelets (MLG) have been tested by using a phase-frequency continuous-wave ultrasound probing (USP). The dian epoxy CHS-EPOXY 520 curried with diethylenetriamine (DETA) was the polymer matrix for the nanocomposites. The nanoplatelets of the specific surface area Sf ~ 790 m2/g consist of several dozen loosely bound monoatomic graphene layers with an area of about least 5×5 μm2. MLG-mass-loading (φf,m) of the nanocomposites varied from 0.1 % to 5.0 % by weight. Anatase- TiO2 particles, being of about 50 nm in diameter and of Sf ~ 1500 m2/g, have been deposited on MLG in mass concentration of about 1 %. Elastic moduli of the ENCs (namely, the Lame’s constants, the Young’s module, the compression module, and the Poisson’s ratio) have demonstrated negligible variation with φf,m varying regardless the type of filling particles. However, MLG:TiO2-hybrid nanoparticles have proven to impact stronger on the moduli as compared to bare MLG. This result shows a capability to modify molecular structure of epoxy resins by controlling surface reactivity of MLG embedded in the resin.

References

J.A. King, D.R. Klimek, I. Miskioglu, G.M. Odegard, J. Compos. Mater. 49(6), 659 (2015); https://doi.org/10.1177/0021998314522674.

A.S. Sarvestani, Int. J. Solids Struct. 40(26), 7553 (2003); https://doi.org/10.1016/S0020-7683(03)00299-3.

R. Atif, I. Shyha, F. Inam, J. Compos. Mater. 51(2), 209 (2017); https://doi.org/10.1177/0021998316640060.

R. Atif, I. Shyha, F. Inam, Polymers 8(8), 281 (2016); https://doi.org/10.3390/polym8080281.

R Atif, F. Inam, Graphene 5(2), 96 (2016); https://doi.org/10.4236/graphene.2016.52011.

D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Prog. Mater. Sci. 90, 75 (2017); https://doi.org/10.1016/j.pmatsci.2017.07.004.

Fu Shaoyun, Sun Zheng, Huang Pei, Li Yuanqing, Hu Ning, Nano Mater. Sci. 1(1), 2 (2019); https://doi.org/10.1016/j.nanoms.2019.02.006.

M.A.G. Benega, W.M. Silva, M.C. Schnitzler, R.J.E. Andrade, H. Ribeiro, Polym. Test. 98, 107180 (2021); https://doi.org/10.1016/j.polymertesting.2021.107180.

B.M. Gorelov, A.M. Gorb, O.I. Polovina, A.B. Nadtochiy, D.L. Starokadomskiy, S.V. Shulga, V.M. Ogenko, Nanosistemi, Nanomater. Nanotehnologii 14(4), 527 (2016).

B. Gorelov, A. Gorb, A. Nadtochiy, D. Starokadomsky, V. Kuryliuk, N. Sigareva, S. Shulga, V. Ogenko, O. Korotchenkov, O. Polovina, J. Mater. Sci. 54(12), 9247 (2019); https://doi.org/10.1007/s10853-019-03523-7.

Nadtochiy, B. Gorelov, O. Polovina, S. Shulga, O. Korotchenkov, J. Mater. Sci. 56(25), 14047 (2021); https://doi.org/10.1007/s10853-021-06134-3.

C.D. Reddy, S. Rajendran, K.M. Liew, Nanotechnology 17(3), 864 (2006); https://doi.org/10.1088/0957-4484/17/3/042.

M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Lett. 8(10), 3498 (2008); https://doi.org/10.1021/nl802558y.

C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321(5887), 385 (2008); https://doi.org/10.1126/science.1157996.

M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110(1), 132 (2010); https://doi.org/10.1021/cr900070d.

R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, J. Mater. Chem. 21(10), 3301 (2011); https://doi.org/10.1039/c0jm02708a.

Y.J. Liu, Z.H. Tang, Y. Chen, S.W. Wu, B.C. Guo, Compos. Sci. Technol. 168, 214 (2018); https://doi.org/10.1016/j.compscitech.2018.10.005.

H.L. Yang, F. Cai, Y.L. Luo, X. Ye, C. Zhang, S.Z. Wu, Compos. Sci. Technol. 188, 107971 (2020); https://doi.org/10.1016/j.compscitech.2019.107971.

H.Y. Yan, Y.X. Tang, W. Long, Y.F. Li, J. Mater. Sci. 49(15), 5256 (2014); https://doi.org/10.1007/s10853-014-8198-z.

W. Park, Y.F. Guo, X.Y. Li, J.N. Hu, L.W. Liu, X.L. Ruan, Y.P. Chen, J. Phys. Chem. C. 119(47), 26753 (2015); https://doi.org/10.1021/acs.jpcc.5b08816.

X. Shen, Z.Y. Wang, Y. Wu, X. Liu, Y.B. He, J.K. Kim, Nano Lett. 16(6), 3585 (2016); https://doi.org/10.1021/acs.nanolett.6b00722.

N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, 1 (2016); https://doi.org/10.1016/j.progpolymsci.2016.05.001.

M. Monti, M. Rallini, D. Puglia, L. Peponi, L. Torre, J.M. Kenny, Compos. A: Appl. Sci. Manuf. 46, 166 (2013); https://doi.org/10.1016/j.compositesa.2012.11.005.

D. Ciprari, K. Jacob, R. Tannenbaum, Macromolecules 39(19), 6565 (2006); https://doi.org/10.1021/ma0602270.

D. Pitsa, M.G. Danikas, Nano 6(6), 497 (2011); https://doi.org/10.1142/s1793292011002949.

W.X. Peng, S. Rhim, Y. Zare, K.Y. Rhee, Polym. Compos. 40(3), 1117 (2019); https://doi.org/10.1002/pc.24813.

M. Pakseresht, R. Ansari, M.K. Hassanzadeh-Aghdam, Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl. 234(7), 910 (2020); https://doi.org/10.1177/1464420720916857.

H.M. Shodja, A.S. Sarvestani, J. Appl. Mech.-T. Asme. 68(1), 3 (2001); https://doi.org/10.1115/1.1346680.

Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F.Corticelli, V.Morandi, A. Zanelli, V. Bellani, V. Palermo, Adv. Funct. Mater. 23(37), 4684 (2013); https://doi.org/10.1002/adfm.201203686.

K. Eller, E. Henkes, R. Rossbacher, H. Höke, Amines, Aliphatic. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2002).

J. Kanzow, V. Zaporojtchenko, H. Nabika, M. Mizuhata, S. Deki, F. Faupel, Positron Annihilation, Icpa-13, Proceedings 445(6), 313 (2004); https://doi.org/10.4028/www.scientific.net/MSF.445-446.313.

B. Lüthi, Physical Acoustics in the Solid State (Springer, Berlin, 2005).

D. Royer, E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation. (Springer, Berlin, New York, 2000).

K.X. Fu, Q. Xie, F.C. Lu, Q.J. Duan, X.J. Wang, Q.S. Zhu, Z.Y. Huang, Polymers 11(6), 975 (2019); https://doi.org/10.3390/polym11060975.

https://www.americanelements.com/graphene-1034343-98-0.

T.J. Ahrens, Mineral physics and crystallography: a handbook of physical constants. (American Geophysical Union, Washington, 1995).

M.A. Isakovich, General Acoustics (Nauka, Moscow, 1973). [in Russian].

L.D. Landau, L.P. Pitaevskii, A.M. Kosevich, E.M. Lifshitz, Theory of elasticity (Butterworth-Heinemann, 1986).

Recent Advances in Structural Integrity Analysis: Proceedings of the International Congress (APCF/SIF-2014) (Elsevier Academic Press, Amsterdam, 2015).

R. Rohini, P. Katti, S. Bose, Polymer 70(23), A17 (2015); https://doi.org/10.1016/j.polymer.2015.06.016.

S. Zhao, H. Chang, S. Chen, J. Cui, Y. Yan, Eur. Polym. J. 84, 300 (2016); http://doi.org/10.1016/j.eurpolymj.2016.09.036.

H. Eslami, M. Rahimi, F. Müller-Plathe, Macromolecules 46(21), 8680 (2013); https://doi.org/10.1021/ma401443v.

E. Voyiatzis, M. Rahimi, F. Muller-Plathe, M.C. Böhm, Macromolecules 47(22), 7878 (2014); https://doi.org/10.1021/ma500556q.

H. Park, I. Chung, M. Cho, J. Polym. Sci. 58, 1617(2020); https://doi.org/10.1002/pol.20200130.

F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Polymer 47(6), 2036 (2006); https://doi.org/10.1016/j.polymer.2006.01.029.

C. Wehlack, W. Possart, J.K. Kruüger, U. Müller, Soft Mater. 5, 87 (2007); https://doi.org/10.1080/15394450701554536.

L.D. Zhang, H.F. Zhang, G.Z. Wang, C.M. Mo, Y. Zhang, Phys. Status Solidi (A) 157(2), 483 (1996); https://doi.org/10.1002/pssa.2211570232.

S. Sagadevan, Am. J. Nano Res. Appl. 1(1), 27 (2013); https://doi.org/10.11648/j.nano.20130101.16.

T. Tanaka, M. Kozako, N. Fuse and Y. Ohki, IEEETrans. Dielectr. Electr. Insul. 12(4), 669 (2005); https://doi.org/10.1109/TDEI.2005.1511092.

V.U. Novikov, G.V. Kozlov, Russian Chem. Reviews 69(4), 347 (2000); https://doi.org/10.1070/RC2000v069n04ABEH000523.

H. Ribeiro, W.M. Silva, M.-T.F. Rodrigues, J.C. Neves, R. Paniago, C. Fantini, H.D.R. Calado, L.M. Seara, G.G. Silva, J. Mater. Sci. 48,7883 (2013); https://doi.org/10.1007/s10853-013-7478-3.

K.W. Putz, M.J. Palmeri, R.B. Cohn, R.Andrews, L.C. Brinson, Macromolecules 41(18), 6752 (2008); https://doi.org/10.1021/ma800830p.

Published

2022-06-13

How to Cite

Nadtochiy, A., Gorelov, B., Polovina, O., Shulga, S., Korotchenkov, O., & Gorb, A. (2022). Sound Velocities in Graphene-Based Epoxy Nanocomposites. Physics and Chemistry of Solid State, 23(2), 328–334. https://doi.org/10.15330/pcss.23.2.328-334

Issue

Section

Scientific articles (Physics)