Typical mechanisms of degradation of thermoelectric materials and ways to reduce their impact on the reliability of thermoelectric modules

Array

Authors

  • Petro Gorskyi Institute of Thermoelectricity NAS and MES of Ukraine, Chernivtsy, Ukraine; Yuri Fedkovych Chernivtsy National University, Chernivtsy, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.3.505-516

Keywords:

diffusion, self-diffusion, sublimation, contact intermetallic compounds, accumulation of structural defects, mechanical strength, chemical interaction, constructive and technological ways and factors of increasing reliability

Abstract

The review considers a number of typical mechanisms of degradation of thermoelectric materials in the process of their functioning as a part of thermoelectric generator modules. Among them are diffusion and self-diffusion in thermoelectric materials and contact structures, loss of dopants by thermoelectric materials due to sublimation, formation of intermetallic compounds in contact structures, accumulation of structural defects under the influence of thermal and mechanical loads, mechanical destruction of thermoelectric legs, contact structures and other structural members of modules, chemical interaction of thermoelectric materials with other structural members. The main design and technological ways and methods of reducing the negative impact of these mechanisms on the reliability of thermoelectric materials and modules are also considered.

References

Anatychuk L.I. Thermoelements and thermoelectric devices. Handbook. Kyiv: Naukova dumka [in Russian] (1979).

Anatychuk L.I., Kondratenko V.M., Luste O.J., Khavruniak P.T. Effect of evaporation of a volatile compo-nent on the electrical properties of CdSb. Inorganic Materials, VIII (4), 653-658 (1972).

Satterwaite C., Ure R. Electrical and thermal properties of Bi2Te3. Phys.Rev, 108, 1164 (1957); https://doi.org/10.1103/PhysRev.108.1164.

Author’s Certificate № 821871. D.Sh.Abdinov, D.N.Atamova, A.A.Movsum-zade et al. A method for manu-facturing a thermopile and a protective coating for implementing same [in Russian] (1981).

Patent WO/2015/126272. V.I.Grishin, D.V.Kotlov. Method for manufacturing semiconductor legs for ther-moelectric module and thermoelectric module (2015).

Sabo E.P. Mechanisms that determine the resource capabilities of thermoelectric converters. J.Thermoelectricity, 2, 59-70 (2006).

Markoliia A.I., Sudak N.M., Sabo E.P. Creation and improvement of modules of thermoelectric generator of space NPP. Atomnaia energiia- Atomic Energy, 89(1), 74-77 [in Russian] (2000).

Salvo M., Smeacetto F., D’Isanto F. et al.. Glass-ceramic oxidation protection of higher manganese silicide thermoelectric. Journal of European Ceramic Society (2018); https://doi.org/10.1016/j.jeurceramsoc.2018.01.007

US patent No US 7480984 B1. J.S. Sakamoto, T. Caillat, J.-P. Fleurial, G.J. Snyder. Method of suppressing sublimation in advanced thermoelectric devices (2009).

Fedorovich N.A. Diffuziia primesei v termoelektricheskikh materialakh [Diffusion of impurities in thermoe-lectric materials]. Author’s thesis of Cand.Sci (Phys.-Math.). Leningrad [in Russian] (1965).

Vining C.B. Silicon Germanium. In: Thermoelectrics Handbook, Macro to Nano. D.M. Rowe (Ed.). Boca-Raton: CRC Press (1995).

Braun J. F. Application of silicon germanium thermoelectric devices for electrical power production in space. Proc. of the XIV Intern. Conf. on Thermoelectrics (St. Petersburg, Russia, 1995) (pp. 394-400) (1995).

Williams S.G.K., Rowe D.M., Min G. Effect of thermal annealing on the carrier concentration of n-type Sili-con-Germanium-Gallium Phosphide. Proc. XII International Conf. on Thermoelectrics (Yokohama, Japan, 1993) (pp.181-183).

Fu L.W., Rowe D.M., Min G. Long term electrical power factor stability of high temperature annealed Si-Ge/GaP thermoelectric alloys. Proc. XI International Conf. on Thermoelectrics (Arlington, USA, 1992) (pp. 83-86) (1992).

Vining C., Fleurial J.P. Silicon Germanium – An overview of recent developments. Proc. X International Conf. on Thermoelectrics (Arlington, USA, 1991) pp. 1-14 (1991).

Tschetter M.J., Beaudry B.J. 25th Intersoc. Energy Conv. Eng. Conf. Reno NV, 2, 382-386 (1990).

Vikhor L.M., Anatychuk L.I., Gorskyi P.V. Electrical resistance of metal contact to Bi2Te3 based thermoelec-tric legs. J. Appl.Phys. 126, 164503-1 – 164503-8 (2019); https://doi.org/10.1063/15117183.

Tailor P.J., Maddux J.R., Meissner G. et al. Controlled improvement in specific contact resistivity for ther-moelectric materials by ion implantation. Applied Physics Letters, 103, 043902-1– 043902-4 (2013); https://doi.org/10.1063/1.4816054.

Kupka R.K., Anderson W.A. Minim al ohmic contact resistance limits to n-type semiconductors. J. Appl. Phys. 69(6) 3623-3632 (1991); https://doi.org/10.1063/1.348509.

Anatychuk L.I., Vikhor L.M., Mitskaniuk N.V. Contact resistance due to potential barrier at thermoelectric material–metal boundary. J. Thermoelectricity 4, 74-88 (2019).

Anatychuk L.I., Vikhor L.M. Limiting possibilities of reducing contact resistance thermoelectric material-metal”. XVIII International Forum on Thermoelectricity. Abstracts (2020).

Aliieva T.D., Barkhalov B.Sh., Abdinov D.Sh. Structure and electrical properties of interfaces between crys-tals Bi0.5Sb1.5Te3 and Bi2Te2.7Se3 with some alloys. Inorganic Materials 31(2), 194-198 (1995).

Gorskyi P.V. Estimation of the electrical and thermal contact resistances and thermoEMF of transient con-tact layer “thermoelectric material-metal” based on the theory of composites. J.Thermoelectricity 2, 5-12 (1918).

Gorskyi P.V., Mytskaniuk N.V. On the temperature dependences of thermoelectric characteristics of ther-moelectric material-metal trasient layer without regard to percolation effect. J.Thermoelectricity 2, 5-23 (2019).

Gorskyi P.V., Mytskaniuk N.V. On the temperature dependences of thermoelectric characteristics of ther-moelectric material-metal transient layer with regard to percolation effect. J.Thermoelectricity 3, 5-22 (2019).

Gorskyi P.V. On the effect of intermetallics on the electrical and thertmal contact resistances thermoelectric material-metal. J.Thermoelectricity 5, 26-35 (2019).

Kuznetsov G.D., Polystanskiy Y.G., Evseev V.A. The metallization of the thermoelement branches by ionic sputtering of the nickel and cobalt. Proc. XIV International Conference on Thermoelectrics (St. Petersburg, Russia, June 27-30, 1995) (pp.166-167) (1995).

Chuang C.-H., Lin Y.-C., Lin C.-W. Intermetallic reactions during the solid-liquid interdiffusion bonding of Bi2Te2.55Se0.45 thermoelectric materials with Cu electrodes using a Sn interlayer. Metals 6(92), 1-10 (2016); https://doi.org/103390/met.6040092.

Chen S.-W., Yang T.-R., Wu C.U. et al.. Interfacial reactions in the Ni/(Bi0.25Sb0.75)Te3 and Ni/Bi2(Te0.9Se0.1) couples. J. of Alloys and Compounds 686, 847-853 (2016); https://doi.org/10.1016/j.jallcom.2016.06.207.

Jing H., Li Ju, Xu L. et al.. Interfacial reaction and shear strength of SnAgCu/Ni/Bi2Te3-based TE materials during aging. JMEPEG 1-9 (2015); https://doi.org/10.1007/s11665-015-1809-2.

Gorskyi P.V. Effect of nonparabolicity described by the Fivaz model on the electrical resistance of thermoe-lectric material-metal contact. J.Thermoelectricity 5, 5-16 (2019).

Gorskyi P.V. The effect of nonparabolicity described by Fivaz model on the electrical contact resistance thermoelectric material – metal. – In: XVII Freik international conference ICPTTFN-XVII. (Ivano-Frankivsk, Ukraine, May 20-25, 2019). Abstract book. pp.46-47 (2019).

Barbakadze K.G., Vekua T.S., Krivoruchko S.P., Sabo E.P., Сабо Е.П., Shvangiradze R.R. Electrical re-sistance of interconnect transitions tungsten-silicon-germanium alloy (0-75 mas. % Ge). Inorganic Materials 39(12), 1422-1427 (2003).

Barbakadze K.G., Vekua T.S., Krivoruchko S.P., Sabo E.P., Shvangiradze R.R. Change of electrophysical properties of silicon-germanium alloy as a result of interaction with titanium disilicide. In: Thermoelectrics and their applications, pp.172-177 (2000).

Pysarenko H.S., Kvitka O.L., Umanskyi H.S. Resistance of materials. Kyiv: Vyshcha shkola [in Ukrainian] (2004).

Landau L.D., Lifshits E.M. Elasticity theory. Moscow: Nauka [in Russian] (1987).

Kittel Ch. Introduction into solid state physics. Moscow: Nauka [in Russian] (1978).

Anatychuk L.I., Luste O.J. The effect of degradation on the service life properties of thermoelectric materi-als. J.Thermoelectricity 5, 84-96 (2017).

Anatychuk L.I., Luste O.J. Peculiarities of reliability theory using in thermoelectricity. J. Thermoelectricity 1, 63-69 (2001).

Anatychuk L.I., Balazyuk V.N., Luste O.J., Malyshko V.V., Mikhalchenko V.P. About increase of thermoe-lectric cooling modules cyclic stability. J.Thermoelectricity 2003, 71-75 (2003).

Click P., Marlow R. Reliability and failure modes of thermoelectric heat pumps. Proc. 2nd Intl. Conf. On Thermoelectric Energy Conversion (Arlington, Texas, USA, 1978) pp. 115-120 (1978).

Kim H.S., Wang T., Liu W., Ren Z. Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators. Advanced Functional Materials 26, 3678-3686 (2016).

Patent of USA No 4011104. A. Basilius. Thermoelectric system (1977).

Patent of USA No 4802929. A. Shock. Compliant thermoelectric converter (1989).

Patent of USA No 6266962 B1. U.S.Ghoshal. Highly reliable thermoelectric cooling apparatus and method (2001).

Voronin A.I., Osipkov A.S., Gorbatovskaia T.A. Mechanical strength of thermoelement legs with different methods of their preparation. Nano-i Mikrosistemnaya Tekhnika №2 (115), 17-21 [in Russian] (2010).

Wereszczak A.A., McCarty R., Thompson A., Sharp J. Thermoelectric mechanical reliability. 2012 Vehicle technologies annual merit review and peer evaluation meeting (Arlington VA., 15 May 2012) (2012).

Liu W., Jie Q., Kim H.S., Ren Z. Current progress and future challenges in thermoelectric power generation: from materials to devices. Preprint of department of physics and Texas center for superconductivity (TcSUH) (University of Houston, Texas 77204, USA).

Karri N.K., Mo C. Reliable thermoelectric module design under opposing requirements from structural and thermos-electric considerations. Journal of Electronic Materials 1-10 (2017); https://doi:10.1007/s11664-017-5934-6 .

Yan Yi. Vertical self-defined thermoelectric legs for use in thin-film micro thermo electric generators (μ-TEG). A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philos-ophy (Electrical Engineering) in the University of Michigan (2019).

Published

2022-09-10

How to Cite

Gorskyi, P. (2022). Typical mechanisms of degradation of thermoelectric materials and ways to reduce their impact on the reliability of thermoelectric modules: Array. Physics and Chemistry of Solid State, 23(3), 505–516. https://doi.org/10.15330/pcss.23.3.505-516

Issue

Section

Scientific articles (Physics)