Evaluation of biological effects of graphene oxide using Drosophila

  • Olha Strilbytska Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Uliana Semaniuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Nadia Burdyliuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Oleh Lushchak Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Keywords: graphene oxide, Drosophila, oxidative stress, metabolism, lifespan


Graphene and its derivatives have attracted great interest because of their intriguing physical and chemical properties. An increasing phase of commercial production causes the presence of graphene in the environment and might pose a great threat to a wide range of living organisms, including bacteria, viruses, plants, invertebrates and mammals, including humans. In the present study, the graphene oxide (GO) at low doses was evaluated for its biological effects on larvae and the imago of Drosophila melanogaster. Oral administration of GO at concentrations of 0.02-1% has a beneficial effect on the developmental rate and hatching ability of larvae. Long-term administration of a low dose of GO extends Drosophila lifespan and significantly enhances resistance to environmental stresses. We also found that GO exposure led to a remarkable decrease in the level of hemolymph glucose, glycogen and triglycerides storage. These suggest about GO affects carbohydrate and lipid metabolism in adult Drosophila. These findings might provide a useful reference to assess the biological effects of GO, which could play an important role in a variety of graphene-based biomedical applications.


A. Armano, S. Agnello, Two-Dimensional Carbon: A Review of Synthesis Methods, and Electronic, Optical, and Vibrational Properties of Single-Layer Graphene, Journal of Carbon Research 5(4), 67 (2019); https://doi.org/10.3390/c5040067.

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306(5696), 666 (2004); https://doi.org/10.1126/science.1102896.

M. Pumera, Graphene in biosensing, Materials Today 14(7-8), 308 (2011); https://doi.org/10.1016/S1369-7021(11)70160-2.

C. McCallion, J. Burthem, K. Rees-Unwin, A. Golovanov, A. Pluen, Graphene in therapeutics delivery: Problems, solutions and future opportunities, European Journal of Pharmaceutics and Biopharmaceutics 104, 235 (2016); https://doi.org/10.1016/j.ejpb.2016.04.015.

X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose Oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing, Biosensors and Bioelectronics 25(4), 901 (2009); https://doi.org/10.1016/j.bios.2009.09.004.

L. Ji, P. Meduri, V. Agubra, X. Xiao, M. Alcoutlabi, Graphene-Based Nanocomposites for Energy Storage, Advanced Energy Materials 6, 1502159 (2016); https://doi.org/10.1002/aenm.201502159.

H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene Composite as a High Performance Photocatalyst, ACS Nano 4(1), 380 (2010); https://doi.org/10.1021/nn901221k.

H. Su, Y.H. Hu, Recent advances in graphene-based materials for fuel cell applications, Energy Science & Engineering 9, 958 (2021); https://doi.org/10.1002/ese3.833.

R. Yadav, A. Subhash, N. Chemmenchery, B. Kandasubramanian, Graphene and Graphene Oxide for Fuel Cell Technology, Industrial & Engineering Chemistry Research 57 (2018); https://doi.org/10.1021/acs.iecr.8b02326.

N. Malhotra, O.B. Villaflores, G. Audira, P. Siregar, J.S. Lee, T.R. Ger, C.D. Hsiao, Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding, Molecules 25(16), 3618 (2020); https://doi.org/10.3390/molecules25163618.

L. Ou, B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, L. Shao, Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms, Particle and Fibre Toxicology 13(1), 57 (2016); https://doi.org/10.1186/s12989-016-0168-y.

S. Priyadarsini, S.K. Sahoo, S. Sahu, S. Mukherjee, G. Hota, M. Mishra, Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster, Environmental Science and Pollution Research 26(19), 19560 (2019); https://doi.org/10.1007/s11356-019-05357-x.

Q. Guo, Y. Yang, L. Zhao, J. Chen, G. Duan, Z. Yang, R. Zhou, Graphene oxide toxicity in W1118 flies, Science of the Total Environment 805, 150302 (2022); https://doi.org/10.1016/j.scitotenv.2021.150302.

O. Strilbytska, V. Velianyk, N. Burdyliuk, I.S. Yurkevych, A. Vaiserman, K.B. Storey, A. Pospisilik, O. Lushchak, Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in drosophila, Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 241, 110622 (2020); https://doi.org/10.1016/j.cbpa.2019.110622.

A. Tencha, V. Fedoriv, I. Shtepliuk, R. Yakimova, I. Ivanov, V. Khranovskyy, K. Shavanova, Y. Ruban, Synthesis of graphene oxide inks for printed electronics, IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), (2017); P. 155; https://doi.org/10.1109/YSF.2017.8126608.

O.V. Lozinsky, O.V. Lushchak, N.I. Kryshchuk, N.Y. Shchypanska, A.H. Riabkina, S.V. Skarbek, I.V. Maksymiv, J.M. Storey, K.B. Storey, V.I. Lushchak, S-nitrosoglutathione-induced toxicity in Drosophila melanogaster: Delayed pupation and induced mild oxidative/nitrosative stress in eclosed flies, Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 164(1), 162 (2013); https://doi.org/10.1016/j.cbpa.2012.08.006.

O.V. Lozinsky, O.V. Lushchak, J.M. Storey, K.B. Storey, V.I. Lushchak, Sodium nitroprusside toxicity in Drosophila melanogaster: delayed pupation, reduced adult emergence, and induced oxidative/nitrosative stress in eclosed flies, Archives of Insect Biochemistry and Physiology 80(3), 166 (2012); https://doi.org/10.1002/arch.21033.

O.M. Strilbytska, U.V. Semaniuk, K.B. Storey, B.A. Edgar, O.V. Lushchak, Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila, Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology 203, 92 (2017); https://doi.org/10.1016/j.cbpb.2016.09.008.

O.M. Strilbytska, K.B. Storey, O.V. Lushchak, TOR signaling inhibition in intestinal stem and progenitor cells affects physiology and metabolism in Drosophila, Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology 243-244, 110424 (2020); https://doi.org/10.1016/j.cbpb.2020.110424.

B.M. Rovenko, N.V. Perkhulyn, O.V. Lushchak, J.M. Storey, K.B. Storey, V.I. Lushchak, Molybdate partly mimics insulin-promoted metabolic effects in Drosophila melanogaster, Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology 165, 76 (2014); https://doi.org/10.1016/j.cbpc.2014.06.002.

O.M. Strilbytska, A. Zayachkivska, A. Koliada, F. Galeotti, N. Volpi, K.B. Storey, A. Vaiserman, O. Lushchak, Anise Hyssop Agastache foeniculum Increases Lifespan, Stress Resistance, and Metabolism by Affecting Free Radical Processes in Drosophila, Frontiers in Physiology 11, 596729 (2020); https://doi.org/10.3389/fphys.2020.596729.

A. Bianco, Graphene: Safe or Toxic? The Two Faces of the Medal, Angewandte Chemie International Edition 52(19), 4986 (2013); https://doi.org/10.1002/anie.201209099.

X. Wang, T. Zhang, H. Xie, Z. Wang, D. Jing, K. He, X. Gao, Phenotypic responses and potential genetic mechanism of lepidopteran insects under exposure to graphene oxide, Ecotoxicology and Environmental Safety 228, 113008 (2021); https://doi.org/10.1016/j.ecoenv.2021.113008.

H. Zou, F. Zhao, W. Zhu, L. Yan, H. Chen, Z. Gu, Q. Yuan, M. Zu, R. Li, H. Liu, In Vivo Toxicity Evaluation of Graphene Oxide in Drosophila Melanogaster After Oral Administration, Journal of Nanoscience and Nanotechnology 16(7), 7472 (2016); https://doi.org/10.1166/jnn.2016.11126.

X. Wang, H. Xie, Z. Wang, K. Hea, D. Jing, Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect, Environmental Science: Nano 6(1), (2018); https://doi.org/10.1039/C8EN00902C.

S.H. Lee, H.Y. Lee, E.J. Lee, D. Khang, K.J. Min, Effects of carbon nanofiber on physiology of Drosophila, International Journal of Nanomedicine 10, 3687 (2015); https://doi.org/10.2147/IJN.S82637.

S.M. Shreve, S.X. Yi, R.E. Jr. Lee, Increased dietary cholesterol enhances cold tolerance in Drosophila melanogaster, Cryo Letters 28(1), 33 (2007); https://www.ingentaconnect.com/content/cryo/cryo/2007/00000028/00000001/art00004.

R. Kurapati, S.P. Mukherjee, C. Martín, G. Bepete, E. Vázquez, A. Pénicaud, B. Fadeel, A. Bianco, Degradation of Single-Layer and Few-Layer Graphene by Neutrophil Myeloperoxidase, Angewandte Chemie International Edition 57(36), 11722 (2018); https://doi.org/10.1002/anie.201806906.

G. Peng, M.F. Montenegro, C.N.M. Ntola, S. Vranic, K. Kostarelos, C. Vogt, M.S. Toprak, T. Duan, K. Leifer, L. Bräutigam, J.O. Lundberg, B. Fadeel, Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract, Nanoscale 12(32), 16730 (2020); https://doi.org/10.1039/d0nr03675g.

How to Cite
StrilbytskaO., SemaniukU., BurdyliukN., & LushchakO. (2022). Evaluation of biological effects of graphene oxide using Drosophila. Physics and Chemistry of Solid State, 23(2), 242-248. https://doi.org/10.15330/pcss.23.2.242-248
Scientific articles (Chemistry)