Synthesis and properties of polycharge phases in the system La-Li-M-Co-O (M=Ca, Sr, Ba)

Array

Authors

  • Olexandr Dziazko Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Sergiy Nedilko Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Olexandr Zaslavsky Ukrainian State Scientific Research Institute "Resurs", Kyiv, Ukraine
  • Vadym Kulichenko Kyiv National University of Construction and Architecture, Kyiv, Ukraine
  • Igor Fesych Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Anastasiia Bolotnikova Bogomolets National Medical University of Kyiv, Kyiv, Ukraine
  • Nataliia Sabadash Food Technologies National University of Food Technologies, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.3.435-442

Keywords:

LaCoO3, mixed oxides, lanthanum cobaltates, perovskite-like structure, surface morphology, FMR, diffuse reflection spectra, cluster spin glass

Abstract

Samples of La1-3xLixM2xCoO3-δ (M = Ca, Sr, Ba; 0≤x≤0,1) were synthesized by co-precipitation method. It is shown that the region of their homogeneity lies in the range of substitutions 0≤ x ≤0.05. The volume of the unit cell increases   with the size of the alkaline earth metal that replaces lanthanum. Surface morphology of the obtained mixed oxides was studied by SEM. In all samples (except strontium - containing) paramagnetic Co2+ ions from the impurity Co3O4, which are in different local environments and have different degrees of exchange interaction with each other, are contained in the form of chain fragments -Co2+-O2--Co2+-O2--Co2+-O2—  and contain defective centers Со2+, which are formed during the desorption of lattice oxygen from the surface, or in the process of diffusion of oxygen from the volume of material to the surface. In strontium-containing samples La0,85Lix0,05Sr0,01CoO3-δ there are mainly ferromagnetic clusters Co3+-Co4+.

References

E. Muhumuza, P. Wu, T. Nan, P. Bai, S. Mintova, Z. Yan, Perovskite-Type LaCoO3 as an Efficient and Green Catalyst for Sustainable Partial Oxidation of Cyclohexane, Ind. Eng. Chem. Res. 59, 21322 (2020); https://doi.org/10.1021/acs.iecr.0c04095.

M. Ao, G.H. Pham, V. Sage, V. Pareek, Structure and activity of strontium substituted LaCoO3 perovskite catalysts for syngas conversion, J. Mol. Catal. A Chem. 416, 96 (2016); https://doi.org/10.1016/j.molcata.2016.02.020.

V. Kulichenko, S. Nedilko, O. Dziazko et all., The preparation of lanthanum nickelates by the component coprecipitation method, Bulletin of the Taras Shevchenko National University. Chemistry 49, 7 (2013) [in Ukrainian].

A. Golub, T. Maidukova, On the interaction of lanthanum nitrate with aluminum carbonate in solution, Izv. AN USSR. Inorganic materials 1, 1166 (1965) [in Russian].

V. Kulichenko, S. Nedilko, O. Dziazko, Determination of the stoichiometry of complex oxides based on lanthanum, nickel and cobalt, Bulletin of the Taras Shevchenko National University. Chemistry 33, 115 (1996) [in Ukrainian].

Oxford Cryosystems Ltd.: Crystallographica Search-Match, J. Appl. Crystallogr. 32, 379 (1999); https://doi.org/10.1107/S0021889899004124.

J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr. 11, 102 (1978); https://doi.org/10.1107/S0021889878012844.

T. Keijser, E. Mittemeijer, H. Rozendaal, The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures, J. Appl. Crystallogr. 16, 309 (1983); https://doi.org/10.1107/S0021889883010493.

H. Taguchi, M. Shimada, M. Koizumi, Magnetic properties in the system (La1-xCax)CoO3 (0≤ x ≤ 0.6), J. of Solid State Chem. 41, 329 (1982); https://doi.org/10.1016/0022-4596(82)90153-0.

C.R. Michel, A.S. Gago, H. Guzmán-Colín, E.R. López-Mena, D. Lardizábal, O.S. Buassi-Monroy, Electrical properties of the perovskite Y0.9Sr0.1CoO3-δ prepared by a solution method, Mater. Res. Bull. 39, 2295 (2004); https://doi.org/10.1016/j.materresbull.2004.07.024.

S.B. Patil, D.K. Chakrabarty, M.V. Babu, S.N. Shringi, Mössbauer spectroscopic studies of the BaxLa1-xCoO3 system, Phys. stat. sol. (a). 65, 65 (1981); https://doi.org/10.1002/pssa.2210650107.

T. Matsuura, J. Mizusaki, S. Yamauchi, Martensitic Transformation in La1-xSrxCoO3, Jap. J. Appl. Phys. 23, 1197 (1984); https://doi.org/10.1143/JJAP.23.1197.

Y.Y. Kim, D.H. Lee, T.Y. Kwon, S.H. Park, Infrared Spectra and Seebeck Coefficient of LnCoO3 with the Perovskite Structure, J. Solid State Chem. 112, 376 (1994); https://doi.org/10.1006/jssc.1994.1319.

N.N. Lubinskii, L.A. Bashkirov, G.S. Petrov S.V. Shevchenko, I.N. Kandidatova, M.V. Bushinskii, Crystal structure and ir spectra of lanthanum cobaltites-gallates, Glass and Ceramics. 66, 59 (2009); https://doi.org/10.1007/s10717-009-9124-8.

D. Berger, N. Landschoot, C. Ionica, F. Papa, V. Fruth, Synthesis of pure and doped lanthanum cobaltite by the combustion method, J. Optoelectron. Adv. Mater. 5, 719 (2003).

A.S. Marfunin, Physics of minerals and inorganic materials. An introduction (Springer-Verlag Berlin, Heidelberg, New York, 1979).

L.F. Liotta, G. Pantaleo, A. Macaluso, G. Di Carlo, G. Deganello, CoOx catalysts supported on alumina and alumina-baria: influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions, Appl. Catal. A: Gen. 147, 167 (2003); https://doi.org/10.1016/S0926-860X(02)00652-X.

C. Zhang, H. He, N. Wang, H. Chen, D. Kong, Visible-light sensitive La1-xBaxCoO3 photocatalyst for malachite green degradation, Ceram. Int. 39, 3685 (2013); https://doi.org/10.1016/j.ceramint.2012.10.200.

M.B. Bellakki, J. Das, V. Manivannan, Synthesis, and measurement of structural and magnetic properties, of La1-xCdxCoO3 perovskite ceramic oxides, J. Electroceram. 24, 319 (2010); https://doi.org/10.1007/s10832-009-9576-9.

I. Fesych, V. Trachevsky, A. Dzyazko, S. Nedil’ko, A. Melnik, O. Didenko, G. Kosmambetova, P. Strizhak, XXth International Seminar on Physics and Chemistry of Solids, September 12-15 (Lviv, Ukraine, 2015) P.74.

S. Royer, F. Berube, S. Kaliagiune, Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1-xFexO3, Appl. Catal. A: Gen. 282, 273 (2005); https://doi.org/10.1016/j.apcata.2004.12.018.

S. Kaliaguine, A. Van Neste, V. Szabo J.E. Gallot, M. Bassir, R. Muzychuk, Perovskite-type oxides synthesized by reactive grinding: Part I. Preparation and characterization, Appl. Catal. A: Gen. 209, 345 (2001); https://doi.org/10.1016/S0926-860X(00)00779-1.

I.V. Fesich, V.V. Trachevsky, A.G. Dziazko S. A. Nedilko, A. K. Melnik, Optical and Electromagnetic Properties of LaCoO3:Li+;M2+ (M = Ca, Sr, Ba), Journal of Applied Spectroscopy. 81, 624 (2014); https://doi.org/10.1007/s10812-014-9980-z.

Published

2022-08-16

How to Cite

Dziazko, O., Nedilko , S., Zaslavsky, O., Kulichenko , V., Fesych, I., Bolotnikova, A. ., & Sabadash , N. . (2022). Synthesis and properties of polycharge phases in the system La-Li-M-Co-O (M=Ca, Sr, Ba): Array. Physics and Chemistry of Solid State, 23(3), 435–442. https://doi.org/10.15330/pcss.23.3.435-442

Issue

Section

Scientific articles (Chemistry)