Influence of interstitial elements (oxygen, nitrogen) on properties of zirconium alloys (review)

  • Vasyl Trush Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine
  • Mykola Pylypenko Institute of Solid State Physics Materials and Technologies National Academy of Sciences of Ukraine National Science Center «Kharkov Institute of Physics and Technology», Kharkiv, Ukraine
  • Petro Stoev Institute of Solid State Physics Materials and Technologies National Academy of Sciences of Ukraine National Science Center «Kharkov Institute of Physics and Technology», Kharkiv, Ukraine
  • Mikhail Tikhonovsky Institute of Solid State Physics Materials and Technologies National Academy of Sciences of Ukraine National Science Center «Kharkov Institute of Physics and Technology», Kharkiv, Ukraine
  • Iryna Pohrelyuk Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine
  • Viktor Fedirko Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine
  • Alexander Luk’yanenko Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine
  • Sergii Lavrys Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine
Keywords: zirconium alloys, oxygen, nitrogen, solubility, physical and mechanical properties

Abstract

A review of the regularities of the influence of interstitial elements (oxygen, nitrogen) on the properties of zirconium alloys was presented. It was noted that in the scientific and technical literature dates the main attention is paid to the bulk alloying of zirconium alloys with oxygen and nitrogen at high temperatures. It was shown that zirconium with nitrogen and oxygen forms a number of stable compounds of suboxides and subnitrides. The physico-mechanical characteristics of zirconium after heat treatment under media containing both oxygen and nitrogen components on the properties of zirconium alloys were analysed.

 

Наведено літературний огляд закономірностей впливу елементів проникнення (кисню, азоту) на властивості цирконієвих сплавів. Наголошено, що у науково-технічній літературі основну увагу приділено об'ємному легуванню цирконієвих сплавів киснем та азотом. Показано, що цирконій з азотом та киснем утворює ряд стабільних сполук субоксидів та субнітридів. Наведено фізико-механічні характеристики цирконію після обробки в середовищах, що містять одночасно кисневу та азотну компоненти.

References

A.S. Zaimovsky, A.V. Nikulina, N.G. Reshetnikov, Zirconium alloys in the nuclear industry, Energoizdat, Moscow, (1981). (in Russian).

C. Lemaignan, Zirconium Alloys: Properties and Characteristics, Comprehensive Nuclear Materials 217–232 (2012); https://doi.org/10.1016/b978-0-08-056033-5.00015-x

N.A. Azarenkov, L.A. Bulavin, I.I. Zalyubovsky, V.G. Kirichenko, I.M. Neklyudov, B.A. Shilyaev, Nuclear energy. Chapter 2. Nuclear power. Textbook, V.N. Karazin KhNU, Kharkiv, (2012). (in Russian).

E.O. Adamov, Yu.G. Dragunov, V.V. Orlov et al. Mechanical engineering of nuclear technology. T. IV-25. In 2 books. Book. 1, Mashinostroenie, Moscow, (2005). (in Russian).

T.P. Chernyaeva, A.I. Stukalov, V.M. Gritsina, Oxygen in zirconium: A review based on the materials of domestic and foreign publications for 1955-1999. Scientific-technical complex "Nuclear fuel cycle", NNTs KIPT, Kharkiv, (1999). (in Russian).

T.P. Chernyaeva, A.I. Stukalov, V.M. Gritsina, Influence of oxygen on mechanical properties of zirconium, Problems of atomic science and technology 12(1), 96-102 (2002). (in Russian).

C. Аnghel. Modified oxygen and hydrogen transport in Zr-based oxides. Doctoral Thesis. Division of Corrosion Science Department of Materials Science and Engineering Royal Institute of Technology. Stockholm, Sweden, 256 (2006); https://www.diva-portal.org/smash/get/diva2:10706/FULLTEXT01.pdf.

L. Gribaudo, D. Arias, J. Abriata, The N-Zr (Nitrogen-Zirconium) System. Journal of Phase Equilibria, 15(4), 441-449 (1994); https://doi.org/10.1007/bf02647575.

C. Lemaignan, A. T. Motta, Zirconium Alloys in Nuclear Applications. Materials Science and Technology (2006). https://doi.org/10.1002/9783527603978.mst0111.

T.P. Chernyaeva, A.I. Stukalov, V.M. Gritsina, Oxygen behavior in zirconium, Problems of atomic science and technology 2(77), 71-85 (2000). (in Russian).

D. Douglas, Metal science of zirconium. Atomizdat, Moscow, (1975). (in Russian).

I. Kogan., B.A. Kolachev, Yu.V. Levinsky et al. Constants of interaction of metals with gases. Metallurgiya, Moscow, (1987). (in Russian).

V.M. Azhazha, P.N. Vyugov, S.D. Lavrinenko, V.I. Lapshin, N.N. Pilipenko, Electron beam melting of zirconium, Problems of atomic science and technology 5, 3-11 (2000). (in Russian).

F. Groeschel, A. Hermann, Experiments to understand the corrosion process of fuel rod claddings. Annual Rep. PSI, Annex IV. Villigen, Switzerland, (1996).

A. Shmakov and el. Separate determination of hydrogen in zirconium alloys and in their oxide. PSI TM-43-97-03. Villigen, Switzerland, (1997).

H. Bruchertseifer et ell. Investigation of hydrogen distribution in oxidised zirconium alloys by thermo-release method. Proc. annual meeting on Nucl. Technology «Jahrestagung Kerntechnik», München, Germany (1998).

A.A. Shmakov, E.A. Smirnov, and Kh. Bruchertzeufer, Hydrogen Distribution and Diffusion in Oxidized Zirconium-Based Alloys, Atomic Energy 85(3), 253-255 (1998) (in Russian).

A.A. Shmakov, Diffusion of hydrogen in zirconium oxides before and after the “break”. Problems of atomic science and technology. Issue. 1, 362-365 (2006) (in Russian).

G. Boureau, P. Gerdanian, High temperature thermodynamics of solutions of oxygen in zirconium and hafnium, Journal of Physics and Chemistry of Solids 45(2), 141-145 (1984); https://doi.org/10.1016/0022-3697(84)90112-4.

P.Y. Chevalier, E. Fischer, Thermodynamic modeling of the O-U-Zr system, J. Nucl. Mater. 257(3), 213-255 (1998); https://doi.org/10.1016/s0022-3115(98)00450-4.

K.L. Komarek, M. Silver, Thermodynamics of Nuclear Materials: Proc. Int. Conf. IAEA, Vienna, p. 749-774 (1962).

D.R., Olander, W.-E. Wang, Thermodynamics of U-O and Zr – systems and application to analysis of fuel liquefaction during severe accidents in light water reactors, J. Nucl. Mater. 247, 258-264 (1997); https://doi.org/10.1016/s0022-3115(97)00052-4.

M.V. Ganduglia-Pirovano, A. Hofmann, Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges, J. Sauer. Surface Science Reports 62, 219-270 (2007); http://www2.hu-berlin.de/chemie/sfb546/Publikationen2008/fullpapers/C5/GHS07.pdf.

T. Tsuji, M. Amaya, Study on order-disorder transition of Zr-O alloys (O/Zr = 0 0.31) by heat capacity measurement. J. Nucl. Mater., 223(1), 33-39 (1995); https://doi.org/10.1016/0022-3115(95)00019-4.

O.M. Sreedharan, J.B. Gnanamoorthy, Oxygen potentials in alkali metals and oxygen distribution coefficients between alkali and structural metals - an assessment. J. Nucl. Mater., 89(1), 113-128 (1980); https://doi.org/10.1016/0022-3115(80)90015-x.

D.L. Smith, K. Natesan, Influence of nonmetallic impurity elements on the compatibility of liquid lithium with potential CTR containment materials. Nuclear Technology. 22, 392-404 (1974); https://doi.org/10.13182/nt74-a31423.

H.J. Goldshmidt, Interstitial alloys [transl. from English. S.N. Gorina]. Mir, Moscow, Vol. II. (1971) (in Russian).

P.J. Harward, I.M. George, Determination of β/β+γ eutectoid transition temperature in ZrO2-x at variable heating/cooling rates. J. Nucl. Mater. 265(1-2), 65-68 (1999); https://doi.org/10.1016/s0022-3115(98)00620-5.

P.J. Harward, I.M. George, Dissolution of ZrO2 in molten Zircaloy-4. J. Nucl. Mater. 265(1-2), 69-77 (1999); https://doi.org/10.1016/s0022-3115(98)00512-1.

A. Wells, Structural Inorganic Chemistry. In 3 volumes. Vol. 2. Mir, Moscow (1987).

T. Arima, K. and et., Oxidation kinetics of Zircaloy-2 between 450°C and 600°C in oxidizing atmosphere. J. Nucl. Mater. 257(1), 67-77 (1998); https://doi.org/10.1016/s0022-3115(98)00069-5.

I.I. Kornilov, V.V. Glazova, E.M. Kenina, Effect of Oxygen on the Properties of Zirconium at Elevated Temperatures. Atomic Energy 26(4), 324-327 (1969).

G.M. Hood, Point defect diffusion in α–Zr. J. Nucl. Mater. 159, 149-175 (1988); https://doi.org/10.1016/0022-3115(88)90091-8.

A. Shmakov, B. Kalin, E. Smirnov, Hydrogen in Zirconia Alloys. Hydride Embrittlement and Fracture of Zirconia (Russian Edition). Lambert Academic Publishing, Chisinau (2014). ISBN 978-3659532665 .

M.V. Koteneva, Structure and destruction of oxide films of zirconium alloys: abstract of dissertation for the competition. Doctoral Thesis. National Research Technological University MISiS, Moscow, (2014).

J. Zhang, A.R. Oganov, X. Li, H. Dong, Q. Zeng, Novel compounds in the Zr-O system, their crystal structures and mechanical properties. Physical Chemistry Chemical Physics 17(26), 17301-17310 (2015); https://doi.org/10.1039/c5cp02252e.

B. Puchala, A. Van der Ven, Thermodynamics of the Zr-O system from first-principles calculations. Physical Review B 88(9), 094108 (2013); https://doi.org/10.1103/physrevb.88.094108.

D. Lee, P.T. Hill, Effect of oxygen on the fatigue behavior of Zircaloy. J. Nucl. Mater. 60(2), 227-230 (1976); https://doi.org/10.1016/0022-3115(76)90170-7.

R. Chosson, A.F. Gourgues-Lorenzon, V. Vandenberghe, J.C. Brachet, J. Crépin, Creep flow and fracture behavior of the oxygen-enriched alpha phase in zirconium alloys. Scripta Materialia 117, 20-23 (2016); https://doi.org/10.1016/j.scriptamat.2016.02.

S.A. Nikulin, A.B. Rozhnov, A.Y. Gusev, T.A. Nechaykina, S.O. Rogachev, M.Y. Zadorozhnyy, Fracture resistance of Zr-Nb alloys under low-cycle fatigue tests. J. Nucl. Mater. 446(1-3), 10-14 (2014); https://doi.org/10–14. 10.1016/j.jnucmat.2013.11.039.

V.S. Vakhrusheva, O.A. Kolenkova, G.D. Sukhomlin, Influence of oxygen content on ductility, damageability and parameters of acoustic emission of metal pipes from Zr-1%Nb alloy. Problems of atomic science and technology 5, 104-109 (2005); https://vant.kipt.kharkov.ua/ARTICLE/VANT_2005_5/article_2005_5_104.pdf.

M. Liyanage, R. Miller, R.K.N.D. Rajapakse, Effect of Oxygen on Hydrogen Diffusivity in α-Zirconium. arXiv:1909.02486v1 [cond-mat.mtrl-sci] (2019); https://arxiv.org/pdf/1909.02486.pdf.

J. Desquines. V. Georgenthum. F. Lemoine. B. Cazalis, The fracture and spallation of zirconia layers in high burnup PWR fuel claddings submitted to RIA transients. Proceedings of 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) (Beijing. China. August 7-12, 2005); https://www.academia.edu/18675979/the_fracture_and_spallation_of_zirconia_layers_in_high_burnup_pwr_fuel_claddings_submitted_to_ria_transients.

P. Rudling, Zr alloy corrosion hydrogen pickup. ANT International, Molnlycke, Sweden, p. 96 (2013); https://www.nrc.gov/docs/ML1525/ML15253A227.pdf.

I. Aitchison, P.H. Davies, Role of microsegre-gationin fracture of cold-worked Zr-2,5% Nb pressure tubes II. J. Nucl. Mater. 203(3), 206-220 (1993); https://doi.org/10.1016/0022-3115(93)90377-b.

A.V. Nikulina, M.M. Peregud, B.K. Shamardin, V.P. Kobylyansky, Metallurgical factors that determine the properties of zirconium alloys under irradiation. Proceedings of II International Conference on Reactor Materials Science (Alushta, May 22-25, 1990), Kharkov Physical-Technical Institute (KIPT), Kharkov, Vol. 4, р. 40-54 (1990) (in Russian); https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/052/24052907.pdf.

V.P. Kobylyansky, V.K. Shamardin, Z.E. Ostrovsky, V.M. Raevsky, A.B. Nikulina, M.M.Peregud, V.M. Grigoriev, Radiation forming of cladding and channel pipes from zirconium alloys at high neutron fluences. Proceedings of II International Conference on Reactor Materials Science, (Alushta, May 22-25, 1990), Kharkov Physical-Technical Institute (KIPT), Kharkov, Vol. 4, р. 64-72 (1990 ) (in Russian).

V.A. Tsikalov, B.V. Samsonov, A.Ya. Rogozyanov, P.P. Losev. V.C. Shamardin. V.P.Kobylyansky, A.V. Nikulina, M.B. Thebesian, Influence of Reactor Irradiation on Mechanical Properties of Zirconium Alloys. Physics and chemistry of material processing 6, 3-7 (1982) (in Russian).

E.M. Tararaeva, L.S. Muravieva, Influence of oxygen and tin on the mechanical properties of zirconium alloys with 1 and 2.5% Nb. In book: Structure and properties of alloys for nuclear power engineering / Ed. O.S. Ivanova, T.A. Babaev. Nauka, Moscow, (1973) (in Russian).

R.F. Voitovich, Oxidation of zirconium and its alloys. Naukova Dumka, Kyiv, (1989) (in Russian).

O. Вlahova, R. Medlin, J. Riha, Evaluation of microstructure and local mechanical properties of zirconium alloys. In: 18th International Conference on Metallurgy and Materials (May 19th - 21st 2009). Proceedings. Metal-2009. Červený Zámek, Hradec nad Moravicí, Czech Republic, 19–21.5.2009 (2009); http://metal2013.tanger.cz/files/proceedings/metal_09/Lists/Papers/084_e.pdf.

M. Steinbrück, M. Große, Deviations from parabolic kinetics during oxidation of zirconium alloys. Zirconium in the Nuklear industry : Proceedings of 17th International Symposium on Zirconium in the Nuclear Industry, ASTM International, West Conshohocken, p. 979 (2014); https://doi.org/10.1520/STP154320130022.

M. Steinbrueck, F.O. da Silva, M. Grosse, Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600–1200 °C. J. Nucl. Mater. (2017); https://doi.org/10.1016/j.jnucmat.2017.04.034.

O.M. Ivasishin, V.N. Voyevodin, А.I. Dekhtyar, P.E. Markovsky, M.M. Pylypenko, S.D.Lavrinenko, R.G. Gontareva, Peculiarities of Mechanical Behavior of Fuel Rod Tubes Made of Zr-1%Nb Alloy under Conditions of Emergency Shutdown Simulation of Cooling. Problems of atomic science and technology 5(99), 53 (2015); http://dspace.nbuv.gov.ua/bitstream/handle/123456789/112292/10-Ivasishin.pdf.

M. Steinbrück, High-temperature reaction of oxygen-stabilized a-Zr(O) with nitrogen. J. Nucl. Mater. 447(1-3), 46-55 (2014); https://doi.org/10.1016/j.jnucmat.2013.12.024.

J. Benard, L'oxydation des Metaux, Tom. II, Gauthiers Villard, Paris, (1964).

J. Birchley, L. Fernandez-Moguel, Simulation of air oxidation during a reactor accident sequence: Part 1 – Phenomenology and model development. Annals of Nuclear Energy 40(1), 163-170 (2012); https://doi.org/10.1016/j.anucene.2011.10.019.

S. Yu, Q. Zeng, A. R. Oganov, G. Frapper, B. Huang, H. Niu, L. Zhang, First-principles study of Zr–N crystalline phases: phase stability, electronic and mechanical properties. RSC Advances 7(8), 4697-4703 (2017); https://doi.org/10.1039/c6ra27233a.

A. A. Gromov, Patterns of the processes of obtaining nitrides and oxynitrides of elements of III and IV groups: a study guide, Publishing House of Tomsk Polytechnic University, Tomsk, (2009) (in Russian); https://portal.tpu.ru/departments/otdel/publish/izdaniya_razrabotanye_v_ramkah_IOP/Tab/zakonom_proz_zachita.pdf.

Van Lam Do, Thi Mai Dung Do & Toru Ogawa, Features of Zr-rich corner of the Zr-N-O ternary system by controlled low-pressure oxidation and thermodynamic analysis. Journal of Nuclear Science and Technology 1-11 (20170; https://doi.org/10.1080/00223131.2017.1315974.

Yu.G. Zanulin, Areas of homogeneity of zirconium oxide nitride with NaCl structure type at 1500°C. Zh. Neorg. Khim. 16, 315-317 (1971). (in Russian).

A. Ermoline. Experimental technique for studying high-temperature phase equilibria in reactive molten metal based systems. Dissertation 669. New Jersey Institute of Technology, Newark, New Jersey, USA, (2005); https://digitalcommons.njit.edu/cgi/viewcontent.cgi?article=1724&context=dissertations.

V.S. Trush, V.N. Fedirko, A.G. Luk’yanenko, M.A. Tikhonovsky, P.I. Stoev. Influence of thermochemical treatment on properties of tubes from Zr-1Nb alloy. Problems of atomic science and technology 114(2), 70-75 (2018).

V.S. Trush, О.H. Lukianenko, P.І. Stoev, Influence of modification of the surface layer by penetrating impurities on the long-term strength of Zr–1% Nb Alloy, Materials Science 55(4), 585-589 (2020); https://doi.org/10.1007/s11003-020-00342-z.

V.M. Fedirko, O.H. Luk'yanenko, V.S. Trush, Influence of the diffusion saturation with oxygen on the durability and long-term static strength of titanium alloys, Materials science 50(3), 415-420 (2014); https://doi.org/10.1007/s11003-014-9735-2.

V.N. Fedirko, A.G. Luk’yanenko, V.S. Trush, Solid-solution hardening of the surface layer of titanium alloys. Part 1. Effect on mechanical properties, Metal Science and Heat Treatment 56(7), 368-373 (2014); https://doi.org/10.1007/s11041-014-9764-3.

I.M. Pohrelyuk, J. Padgurskas, O.V. Tkachuk, A.G. Luk’yanenko, V.S. Trush, S.M. Lavrys, Influence of oxynitriding on antifriction properties of Ti–6Al–4V titanium alloy, Journal of friction and wear 4(41), 333-337 (2020); https://doi.org/10.3103/s1068366620040108.

Published
2022-06-30
How to Cite
TrushV., PylypenkoM., StoevP., TikhonovskyM., PohrelyukI., FedirkoV., Luk’yanenkoA., & LavrysS. (2022). Influence of interstitial elements (oxygen, nitrogen) on properties of zirconium alloys (review). Physics and Chemistry of Solid State, 23(2), 401-415. https://doi.org/10.15330/pcss.23.2.401-415
Section
Review