Features of the transition to the isotropic state of the liquid crystal sensitive element of the gas sensor under the action of acetone vapor

  • Zynovii Mykytiuk Lviv Polytechnic National University, Lviv, Ukraine
  • Hryhorii Barylo Lviv Polytechnic National University, Lviv, Ukraine
  • Iryna Kremer Lviv Polytechnic National University, Lviv, Ukraine
  • Maria Ivakh Lviv Polytechnic National University, Lviv, Ukraine
  • Yurii Kachurak Lviv Polytechnic National University, Lviv, Ukraine
  • Igor Kogut Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Keywords: acetone vapor, sensitive element, gas sensor

Abstract

The process of detailed research of the transient process, which takes place in the sensitive element of the liquid crystal sensor during interaction with acetone vapors, is described. The abrupt transition of the liquid crystal to the isotropic state is one of the main obstacles which prevents the construction of an acetone liquid crystal sensor. A mixture of nematic liquid crystal E7 and cholesteric impurity CB15 was used as a sensitive element.

 

References

C. Esteves, E. Ramou, A.R.P. Porteira, A.J. Moura, A.C.A. Roque, Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies. Adv. Optical Mater. 8, 1902117 (2020); https://doi.org/10.1002/adom.201902117.

Z. Mykytyuk, G. Barylo, V. Virt et al. Optoelectronic Sensor Based on Liquid Crystal Substances for the Monitoring of Amino Acids, 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 177-180 (2018). https://doi.org/10.1109/INFOCOMMST.2018.8632115.

M.V. Vistak, et al. A liquid crystal-based sensitive element for optical sensors of cholesterol, Funct. Mater., 24(4), 687 (2017); https://doi.org/10.15407/fm24.04.687.

W. Wójcik, Z. Mykytyuk, M. Vistak et al., Sensor optyczny z elementem ciekłokrystalicznym do wykrywania aminokwasów, Przegląd Elektrotechniczny 96(4), 178-181 (2020); https://doi.org/10.15199/48.2020.04.37.

M. Vistak, Z. Mykytyuk, F. Vezyr, V. Polishchuk, Cholesteric-nematic mixture as a sensitive medium of optical sensor for amino acids, Molecular Crystals and Liquid Crystals 672(1), 67 (2018) https://doi.org/10.1080/15421406.2018.1542108.

M. Vistak, V. Dmytrah, R. Fafula, I. Diskovskyi, Z. Mykytyuk, O. Sushynskyi, G. Barylo, Y. Horbenko, Liquid crystals as an active medium of enzymes optical sensors, 7th International Conference Nanomaterials: Application & Properties (NAP) (IEEE, Odessa, 2017) рp.04NB13-1-04NB13-4; https://doi.org/10.1109/NAP.2017.8190326.

T.V. Prystay, Z.M. Mykytyuk, O.Y. Sushynskyi, A.V. Fechan, M.V. Vistak, Nanocomposite based on a liquid crystal doped with aluminum nitride nanotubes for optical sensor of sulfur dioxide, Journal of the Society for Information Display 23(9), 438 (2015); https://doi.org/10.1002/jsid.380.

O. Sushynskyi, M. Vistak, Z. Gotra, A. Fechan, Z. Mikityuk, Silicon dioxide nanoporous structure with liquid crystal for optical sensors, Proc. SPIE 9127, Photonic Crystal Materials and Devices XI, 91271F (2014); https://doi.org/10.1117/12.2051742.

J.C. Anderson, Measuring breath acetone for monitoring fat loss: Review, Obesity 23(12), 2327–2334 (2015); https://doi.org/10.1002/oby.21242.

M. Sun, X. Zhao, H. Yin et al. Study of breath acetone and its correlations with blood glucose and blood beta-hydroxybutyrate using an animal model with lab-developed type 1 diabetic rats, RSC Adv. 5, 71002–71010 (2015).

I. Kim, S. Choi, S. Kim, J. Jang, Smart Sensors for Health and Environment Monitoring. (Springer: Dordrecht, The Netherlands, 2015). p. 19–49.

H.W.J. Baynes, Pathophysiology, Diagnosis and Management of Diabetes Mellitus, Diabetes Metab. 6, 2 (2015); https://doi.org/10.4172/2155-6156.1000541.

J. Lee, J. Ngo, D. Blake et al., Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds, J. Appl. Physiol. 107(1), 155-160 (2009); https://doi.org/10.1152/japplphysiol.91657.2008.

T.D. Minh, S.R. Oliver, J. Ngo, et al., Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects, Am. J. Physiol. Endocrinol. Metab. 300, E1175 (2011); https://doi.org/10.1152/ajpendo.00634.2010.

M. Righettoni, A. Schmid, A. Amann, S.E. Pratsinis, Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS, J. Breath Res. 7(3), 037110 (2013); https://doi.org/10.1088/1752-7155/7/3/037110.

W. Miekisch, J.K. Schubert, From highly sophisticated analytical techniques to life-saving diagnostics: Technical developments in breath Analysis, TrAC Trends Anal. Chem. 25(7), 665–673 (2006); https://doi.org/10.1016/j.trac.2006.05.006.

Z. Mykytyuk, I. Kremer, M. Ivakh, I. Diskovskyi, S. Khomyak, Optical sensor with liquid crystal sensitive element for monitoring acetone vapor during exhalation, Malecular Crystals and Ciquid Crystals 721(1), 24-29 (2021); https://doi.org/10.1080/15421406.2021.1905273.

C. Esteves, E. Ramou, A.R.P. Porteira, A.J. Moura, A.C.A. Roque, Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies. Adv. Optical Mater. 8, 1902117 (2020). https://doi.org/10.1002/adom.201902117.

Y. Han, K.B. Pacheco Morillo, C.W.M. Bastiaansen et al., Optical monitoring of gases with cholesteric liquid crystals, J. Am. Chem. Soc. 132(9), 2961-2967 (2010); https://doi.org/10.1021/ja907826z.

N. Kirchner, L. Zedler, T.G. Mayerhofer, and G.J. Mohr, Functional liquid crystal films selectively recognize amine vapours and simultaneously change their colour, Chem. Commun. 14, 1512 (2006); https://doi.org/10.1039/B517768E.

Sutarlie, L., Qin, H., K.-L. Yang, Polymer stabilized cholesteric liquid crystal arrays for detecting vaporous amines, The Analyst. 135, 1691-1696 (2010); https://doi.org/10.1039/B926674G.

C. Esteves, E. Ramou, A.R.P. Porteira, A.J. Moura, A.C.A. Roque, Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies. Adv. Optical Mater. 8(11), 1902117 (2020); https://doi.org/10.1002/adom.201902117.

R.Politansryi, M.Vistak, G.Barylo, A.Andrushak, Simulation of anti-reflecting dielectric films by the interference matrix method, Optical Materials 102, 109782 (2020); https://doi.org/10.1016/j.optmat.2020.109782.

J. Peláeza and M. Wilson, Comparison of structural properties of some liquid crystals, Phys. Chem. Chem. Phys. 9, 2968-2975 (2007); https://doi.org/10.1039/B614422E.

Lysetskyi Lonhin, Liquid crystals as sensory and bioequivalent materials. Monograph, Kh.: ISMA, 242 p. (2009).

Published
2022-08-24
How to Cite
MykytiukZ., BaryloH., KremerI., IvakhM., KachurakY., & KogutI. (2022). Features of the transition to the isotropic state of the liquid crystal sensitive element of the gas sensor under the action of acetone vapor. Physics and Chemistry of Solid State, 23(3), 473-477. https://doi.org/10.15330/pcss.23.3.473-477
Section
Scientific articles (Technology)