Ferrites gas sensors: A Review

  • Rakesh M. Shedam KLE Institute of Technology, Huballi, India
  • Priyanka P. Kashid KLE Institute of Technology, Huballi, India
  • Shridhar N. Mathad KLE Institute of Technology, Huballi, India
  • Rahul B. Deshmukh Anna Saheb Dange College Of Engineering And Technology, Ashta, India
  • Mahadev R. Shedam New College, Kolhapur, India
  • Ashok B. Gadkari GKG College, Kolhapur, India
Keywords: Gas sensors, Ferrites Thick films

Abstract

Gas sensors that are highly sensitive, stable, and selective are increasingly in demand to detect toxic gases. As a result of the need to monitor concentrations of these gases, humans, animals, and the environment are all protected. Metal ferrites (AFe2O3, where A is a metal) are a major factor in this field. The development of ferrite gas sensors has made remarkable advances in the detection of toxic gases from vehicle exhaust, biological hazards, environmental monitoring, and pollution monitoring over the last decade. It is important for ferrite gas sensors to consider parameters like phase formation, crystallite size, particle size, grain size, dopants, surface area, sensitivity, selectivity, operating temperature, gas concentration, response time, and recovery time. There are various materials for gas sensing use such as carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), ethyl alcohol (C2H5OH), hydrogen sulfide (H2S), C2H5COOH, oxygen (O2), hydrogen (H2), chlorine (Cl2), NH3, C4H10, CH3COOH, gasoline, acetylene, petrol, and liquefied petroleum gas (LPG). Various methods are used to prepare ferrite gas sensors. Additionally, a brief description is provided of the various methods employed for synthesizing ferrite gas sensors. A comprehensive survey of ferrites as gas sensors, such as nickel, copper, zinc, cadmium, cobalt, magnesium, manganese, and multi-component ferrites, prepared by various methods.

References

V.D. Kapse, Preparation of Nanocrystalline Spinel- Type Oxide Materials for Gas Sensing Applications. Research Journal of Chemical Sciences 5, 7 (2015).

J. M Smulko, M. Trawka, C. G. Granqvist, R. Ionescu, F. Annanouch, E. Llobet, L. B. Kish, New Approaches for Improving Selectivity and Sensitivity of Resistive Gas Sensors: A Review, Sensor Review, 35(4), 340 (2015); https://doi.org/10.1108/SR-12-2014-0747.

G. Sberveglieri (Ed.), Gas Sensors: principles,Operation and Developments; Berlin, Germany:Springer Science & Business Media, (2012).

E. A. Symons, Catalytic Gas Sensors. Gas Sensors, 169 (1992); https://doi.org/10.1007/978-94-011-2737-0_5.

E. Bakker, M. Telting-Diaz, Electrochemical Sensors, Analytical Chemistry, 74(12), 2781 (2002); https://doi.org/10.1021/ac0202278.

J. Hodgkinson, R. P. Tatamoptical Gas Sensing: A Review, Measurement Science and Technology, 24(1), 012004 (2012); https://doi.org/10.1088/0957-0233/24/1/012004.

P. Bhattacharyya, Technological Journey towards Reliable Microheater Development for MEMS Gas Sensors; A Review, IEEE Transactions on Device and Materials Reliability, 14(2), 589 (2014); https://doi.org/10.1109/TDMR.2014.2311801.

J. D. N. Cheeke, Z. Wang Acoustic wave gas sensors, Sensors and Actuators B 59, 146–153, (1999); https://doi.org/10.1016/S0925-4005(99)00212-9.

W. P. Jakubik, Surface Acoustic Wave-Based Gas Sensors, Thin Solid Films, 520(3), 986–993, (2011); https://doi.org/10.1016/j.tsf.2011.04.174.

N. Rezlescu, C. Doroftei, E. Rezlescu, P. Lithium Popa, Ferrite for Gas Sensing Applications. Sensors and Actuators B: Chemical, 133(2), 420 (2008); https://doi.org/10.1016/j.snb.2008.02.047.

Z. Sun, L. Liu, D. Zeng Jia, W. Pan, Simple Synthesis of CuFe2O4 Nanoparticles as Gas-Sensing Materials. Sensors & Actuators, B: Chemical, 125(1), 144 (2007); https://doi.org/10.1016/j.snb.2007.01.050.

N. Yamazoe, New approaches for improving semiconductor gas sensors. Sensors and Actuators B: Chemical, 5(1–4), 7–19(1991); https://doi.org/10.1016/0925-4005(91)80213-4.

A. Chiorino, G. Ghiotti, F. Prinetto, M. C. Carotta, M. Gallana & G. Martinelli, Characterization of materials for gas sensors. Surface chemistry of SnO2 and MoOx–SnO2 nano-sized powders and electrical responses of the related thick films, Sensors and Actuators B: Chemical, 59 (2–3), 203 (1999); https://doi.org/10.1016/S0925-4005(99)00221-X.

M. Sugimoto,The past, present and future of ferrites, Journal of the American Ceramic Society,82(2), 269 (1999); https://doi.org/10.1111/j.1551-2916.1999.tb20058.x.

V. R. Singh, Smart sensors, physics, technology, and applications, Indian Journal of Pure and Applied Physics 43(1) 7-16 (2005); https://www.researchgate.net/publication/228366667_Smart_sensors_Physics_technology_and_applications#fullTextFileContent.

D. Bahadur, Current trends in applications of magnetic ceramic materials Bulletin of Materials Science, 15 (5), 431 (1992); http://docplayer.net/104066860-Current-trends-in-applications-of-magnetic-ceramic-materials.html.

Z. Tianshu, P.Hing, Z. Jiancheng, K. Lingbing, Ethanol-sensing characteristics of cadmium ferrite prepared by chemical coprecipitation, Materials Chemistry and Physics, 61(3), 192 (1999); https://doi.org/10.1016/S0254-0584(99)00133-9.

K. M. Reddy, L. Satyanarayana, S. V. Manorama, R. D. K. Misra, A comparative study of the gas sensing behavior of nano structured nickel ferrite synthesized by hydrothermal and reverse micelle technique, Materials Research Bulletin 39(10), 1491 (2004); https://doi.org/10.1016/j.materresbull.2004.04.022.

N. Rezlescu, C. Doroftei, E. Rezlescu, P. D. Popa, The influence of Sn and MO ion on the structural electrical and gas sensing property of Mg ferrite, Physica Status Solidi (A) Applications and Materials Science. 203 (2), 306 (2006); https://doi.org/10.1002/pssa.200521043.

G. A. Prinz, Magnetoelectronics, Science, 282 (5394), 1660–1663. (1998). https://doi.org/10.1126/science.282.5394.1660.

Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, Preparation of ferrite MFe4O4 (M= Co, Ni) ribbons with nanoparticles, Journal of physicsl chemistry B, 112 (36), 11292 (2008); https://doi.org/10.1021/jp804178w.

E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C.D'Orléan, J. L. ehspringer,, M. Kurmoo, Mechano-Synthesis, Characterization, and Magnetic Properties of nanoparticles of Cobalt Ferrite, CoFe2O4, Chemistry of Materials 16(26), 5689-5696 (2004); https://doi.org/10.1021/cm049189u.

C. V. G. Reddy, S. V. Manorama, and V. J. Rao, Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite, Sensors and Actuators B: Chemical, (55) 1, 90 (Apr. 1999); https://doi.org/10.1016/S0925-4005(99)00112-4.

K. C. Patil, S. S. Manoharan, and D. Gajapathy Preparation of high density ferrites, in Hand Book of Ceramic and Composites, New York: Marcel Dekker, 1, 469 (2021).

M. R. Patil, M. K. Rendale, S. N. Mathad,R. B. Pujar, Structural and IR study of Ni0.5–x Cd x Zn0.5Fe2O4 International Journal of Self-Propagating High-Temperature Synthesis, 24(4) 241 (2015); https://doi.org/10.3103/S1061386215040081.

A. B. Gadkari, T. J. Shinde,,P. N. Vasambekar, Structural and magnetic properties of nanocrystalline Mg–Cd ferrites by oxalate precipitation method, Journal of Materials Science: Materials in Electronics, 21(1) 96( 2010); https://doi.org/10.1016/j.matchar.2009.06.010.

Y. Zhihao and Z. Lide, Synthesis and structural characterization of capped ZnFe2O4 nanoparticles Materials Research Bulletin 33(11), 1587 (1998). https://doi.org/10.1016/S0025-5408(98)00164-0.

G.R. Dube and V.S. Darshane, Decomposition of octanol on the spinel system Ga1−x FexCuMnO4 Journal of Molecular Catalysis 79(1–3), 285 (Nov. 1993); https://doi.org/10.1016/0304-5102(93)85108-6.

S. S. Yattinahalli, S. B. Kapatkar, N. H. Ayachit and S. N. Mathad, Synthesis and structural characterization of nanosized nickel ferrite, International Journal of Self-Propagating High-Temperature Synthesis, 22(3), 147 (2013); https://doi.org/10.3103/S1061386213030114.

S. A. Wolf, D. D. Awschalam, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics A spin based electronics vision for the future Science, 294 (5546), 1488 (2001); https://doi.org/10.1126/science.1065389

W. Gopel, J. Hesse, J. N. Zemel, Sensors A Comprehensive Survey Vol. 9, Wiley-VCH, 1995

A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Influence of rare earth ions on structural and magnetic properties of CdFe2O ferrites, Rare Earth, 29 (2) 168 (2010); https://doi.org/10.1007/s12598-010-0029-z.

X.Q. Liu, Z. Xu, Y. Liu, Y. Shen, A novel high performanceethanol gas sensors based on CdO-Fe2O4 semiconducting materials, Sensors and Actuators B: Chemical 52(3), 270–273 (1998); https://doi.org/10.1016/S0925-4005(98)00278-0.

C. V. G. Reddy, S. V. Manorma, V. J. Rao, Preparation and characterization of ferrites as gas sensor materials, Journal of Materials Science Letters 19(9) 775 (2000). https://doi.org/10.1023/a:1006716721984.

N. S. Chen, X. J. Yang, E. S. Liu, and J. L. Huang, Reducing gas-sensing properties of ferrite compounds MFe2 O4 (M = Cu, Zn, Cd and Mg), Sensors and Actuators B: Chemical 66(1-3), 178 (2000); https://doi.org/10.1016/S0925-4005(00)00368-3.

Y. Shimiza, S. Kusarao, H. Kuwayama, K. Tanaka, M. Egasira, Oxygen sensing properties of spinel type oxide, stoichiometric air /fuel combusion control, Journal of the American Ceramic Society 73(4), 818 (1990); https://doi.org/10.1111/j.1151-2916.1990.tb05120.x.

X .Lou, S. Liu, D. Shi, & W. Chu, Ethanol-sensing characteristics of CdFe2O4 sensor prepared by sol–gel method, Materials Chemistry and Physics, 105(1), 67 (2007); https://doi.org/10.1016/J.MATCHEMPHYS.2007.04.038.

V. C. B. Pegoretti, P. R. C. Couceiro, C. M.Gonalves, M. D. F. F.Lelis, J. D. Fabris, Preparation and characterization of tin-doped spinel ferrite, Journal of Alloys and Compounds, 505(1), 125–129(2010); https://doi.org/10.1016/J.JALLCOM.2010.06.058.

H. Suo, F. Wu, Q. Wang, G. Liu, F. Qin, B. Xq, and M. Zhao, Study on ethanol sensitivity of nanocrystalline LaO0.7SrO0.3FeO3 based gas sensor, Sensors and Actuators B: Chemical, 45( 3), 245(1997); https://doi.org/10.1016/S0925-4005(97)00314-6.

K. Muraishi, N. Hiratsuka, T. Katsube, Gas sensing characteristics of porous nickel ferrite added with rare earth metal oxides. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 61(7), 907-908 (1993); https://doi.org/10.5796/electrochemistry.61.907.

N. Rezlescu, N. Iftime, E. Rezlescu, C. Doroftei, and P. D. Popa, Semiconducting gas sensor for acetone based on the fine grained nickel ferrite Sensors and Actuators B: Chemical 114(1) 427 (2006); https://doi.org/10.1016/j.snb.2005.05.030.

S. L. Darshane, R. G. Deshmukh, S. S. Suryavanshi, I. C. Mulla, Gas sensing properties of zinc ferrite nanoparticles synthesized by the molten salt route, Journal of the American Ceramic Society, 91(8) 2724 (2008); https://doi.org/10.1111/j.1551-2916.2008.02475.x.

S. L. Galagali, R. A. Patil, R. B. Adaki, C. S. Hiremath, S. N. Mathad, A. S. Pujar, R. B. Pujar, Fourier transform infrared spectroscopy and elastic properties of Mg1-xCdxFe2O4 ferrite systems. Journal of Science & Technology 41 (5), 992-998 (2019); https://www.thaiscience.info/Journals/Article/SONG/10993099.pdf.

R. Vishwaroop, S.N.Mathad, Synthesis, Structural, W-H plot and Size-Strain analysis of Nano cobalt doped MgFe2O4 Ferrite, Science of Sintering, 52(3) 349 (2020); https://doi.org/10.2298/SOS2003349V.

R. M. Shedam, A. B. Gadkari, S. N.Mathad, M.R. Shedam Structural and Mechanical Properties of nano-sized magnesium ferrite by Oxalate Co-Precipitation Method, International Journal of Self-Propagating High-Temperature Synthesis, 26 (1) 75 (2017); https://doi.org/10.3103/S1061386217010113.

S. S. Kakati, T.M.Makandar, M.K. Rendale, S.N Mathad, Green Synthesis Approach for Nanosized Cobalt Doped Mg–Zn through Citrus Lemon Mediated Sol–Gel Auto Combustion Method, International Journal of Self-Propagating High-Temperature Synthesis, 31(3), 131 (2022); https://doi.org/10.3103/S1061386222030049.

G. M. Shweta, L. R. Naik, R. B. Pujar, S. N. Mathad, Cobalt-Doped Nickel Zinc Nanoferrites by Solution-Combustion Synthesis: Structural and Elastic Parameters, International Journal of Self-Propagating High-Temperature Synthesis 29(3), 157 (2020); https://doi.org/10.3103/S1061386220030115.

P. Rao, R. V. Godbole, S. Bhagwat, Chlorine gas sensing performance of palladium doped nickel ferrite thin films, Journal of Magnetism and Magnetic Materials, 405, 219 (2016); https://doi.org/10.1016/J.JMMM.2015.12.065

R. Vishwarup, S. N. Mathad, Facile synthesis of Nano Mg-Co ferrites (x = 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40) via coprecipitaion route: structural characterization, Materials International, 2(4) 0471 (2020); https://doi.org/10.33263/Materials24.471476.

A. B. Gadkari, T. J. Shinde, P. N. Vasambekar, Ferrite Gas Sensors, IEEE Sensors journal, 11(4), 849-861 (2010); https://doi.org/10.1109/JSEN.2010.2068285.

S. Joshi, V.B Kamble, M. Kumar, A. M. Umarji, G. Srivastava, Nickel Substitution Induced Effects on Gas Sensing Properties of Cobalt Ferrite Nanoparticles, Journal of Alloys and Compounds 654, 460-466. (2016); https://doi.org/10.1016/j.jallcom.2015.09.119.

A. K. Yadav, R. K. Singh, P. Singh, Fabrication of Lanthanum Ferrite Based Liquefied Petroleum Gas, Sensors and Actuators B: Chemical 229, 25 (2016); https://doi.org/10.1016/j.snb.2016.01.066.

X. Yang, S. Zhang, Q. Yu, P. Sun, F. Liu, H. Lu, X. Yan, X. Zhou, X. Liang, Y. Gao, G. Lu, Solvothermal Synthesis of Porous CuFe2O4 Nanospheres for High Performance Acetone, Sensors and Actuators B: Chemical, 270, 538 (2018); https://doi.org/10.1016/j.snb.2018.05.078.

C. Doroftei, O. S. Prelipceanu, A. Carlescu, L. Leontie, M. Prelipceanu, Porous Spinel-Type Oxide Semiconductors for High-Performance Acetone Sensors. In 2018 International Conference on Development and Application Systems (DAS) IEEE 110 (2018). https://doi.org/10.1109/DAAS.2018.8396081.

X. F. Wang, K.M. Sun, S. J. Li, X. Z. Song, L. Cheng, W. Ma, Porous Javelin-like NiFe2O4 Nanorods as n-Propanol Sensor with Ultrahigh-Performance, Chemistry Select, 3(45), 12871 (2018); https://doi.org/10.1002/slct.201802879.

F. Li, S. Guo, J. Shen, L. Shen, D. Sun, B. Wang, Y. Chen, S. Ruan Xylene, Gas Sensor Based on Au-Loaded WO3-H2O Nano cubes with Enhanced Sensing Performance. Sensors and Actuators B: Chemical 238, 364 (2017); https://doi.org/10.1016/j.snb.2016.07.021.

X. Yang, H. Li, T. Li, Z. Li, W. Wu, C. Zhou, P. Sun, F. Liu, X. Yan, Y. Gao, et al. Highly Efficient Ethanol Gas Sensor Based on Hierarchical SnO2/Zn2SnO4 Porous Spheres, Sensors and Actuators B: Chemical, 282, 339 (2019); https://doi.org/10.1016/j.snb.2018.11.070.

Y. H.Choi, D. H. Kim, S. H. Hong, Gas Sensing Properties of p-Type CuBi2O4 Porous Nanoparticulate Thin Film Prepared by Solution Process Based on Metal-Organic Decomposition, Sensors and Actuators B: Chemical 268, 129 (2018); https://doi.org/10.1016/j.snb.2018.04.105.

Y. Xu, X. Tian, P. Liu, Y. Sun, G. Du, GIn2O3, Nanoplates with Different Crystallinity and Porosity: Controllable Synthesis and Gas-Sensing Properties Investigation, Journal of Alloys and Compounds 787, 1063 (2019); https://doi.org/10.1016/j.jallcom.2019.02.176.

T. G. Nenov, S. P. Yordanov, Ceramic Sensors, Technology and Application. Lancaster, PA: Technomic, pp. 20 (1996).

A. Dey, Semiconductor Metal Oxide Gas Sensors: A Review,Materials science and Engineering: B 229, 206 (2018); https://doi.org/10.1016/j.mseb.2017.12.036.

N. Rezlescu, E. Rezlescu, F. Tudorache, P.D. Popa, Gas Sensing Properties of Porous Cu-, Cd-and Zn-Ferrites. Romanian Reports in Physics 61, (2) 223 (2009); http://rrp.infim.ro/2009_61_2/art05Razlescu.pdf.

P. Zhang, H. Qin, W. Lv, H. Zhang, J. Hu, Gas Sensors Based on Ytterbium Ferrites Nanocrystalline Powders for Detecting Acetone with Low Concentrations, Sensors and Actuators B: Chemical, 246, 9 (2017); https://doi.org/10.1016/j.snb.2017.01.096.

E. R. Kumar, P .S. P. Reddy; G. S. Devi, S. Sathiyaraj, Structural, Dielectric and Gas Sensing Behaviour of Mn Substituted Spinel MFe2O4 (M¼Zn, Cu, Ni,and Co) Ferrite Nanoparticles, Journal of Magnetism and Magnetic Materials 398, 281 (2016); https://doi.org/10.1016/j.jmmm.2015.09.018.

T. Dippong, E. A . Levei,. O. Cadar, Recent Advances in Synthesis and Applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles, Nanomaterials 11, 1560 (2021); https://doi.org/10.3390/ nano11061560.

A. S. Poghossian, H. V. Abovian, P. B. Avakian, S. H. Mkrtchian, V. M. Haroutunian, Bismuth Ferrites: New Materials for Semiconductor Gas Sensors, Sensors and Actuators B: Chemical 4, 545 (1991); https://doi.org/10.1016/0925-4005(91)80167-I.

N. Rezlescu, C. Doroftei, P. D. Popa, Humidity-Sensitive Electrical Resistivity of MgFe2O4 and Mg0.9Sn0.1Fe2O4 Porous Ceramics, Romanian Journal of Physics, 52 (3/4), 353 (2007); https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1043.4447&rep=rep1&type.

A. Sutka, G. Mezinskis, Sol-Gel Auto-Combustion Synthesis of Spinel-Type Ferrite Nanomaterials, Frontiers of Materials Science 6, 128 (2012); https://doi.org/10.1007/s11706-012-0167-3.

C. O. Park, S. A. Akber, Ceramics for chemical sensing, Journal Of Materials Science 38, (23) 4611 (2003); https://doi.org/10.1023/A:1027402430153.

R. S. Morrison, Selectivity in semiconductor gas sensors, Sensors and actuators, 12, ( 4),425 (1987); https://doi.org/10.1016/0250-6874(87)80061-6.

G. Zhang, C. Li, F. Cheng, and J. Chen, ZnFe O tubes: Synthesis and application to gas sensors with high sensitivity and low energy consumption, Sensors and Actuators B: Chemical, 120, (2), 403 (2007); https://doi.org/10.1016/j.snb.2006.02.034.

A. B. Bodade, A. V. Kadu, and G. N. Chaudhari, Preparation and structural characterization of nano sized BiFe0.6 Mn0.4 O 3 as a novel material with high sensitivity towards LPG, Journal of Sol-Gel Science and Technology, 45, 27 (2008); https://doi.org/10.1007/s10971-007-1641-8.

B. D. Cullity, Elements of X-Ray Diffraction. Reading, MA: Addison Wesley, (1956).

J. Wu, D. Gao, T. Sun, J. Bi, Y. Zhao, Z. Ning, G. Fan, Z. Xie, Highly Selective Gas Sensing Properties of Partially Inversed Spinel Zinc Ferrite towards H2S, Sensors & Actuators, B: Chemical, 235, 258 (2016); https://doi.org/10.1016/j.snb.2016.05.083.

J. Y. Patil, D. Y. Nadargi, J. L. Gurav, I. S. Mulla, S. S. Suryavanshi, Synthesis of Glycine Combusted NiFe2O4 Spinel Ferrite: A Highly Versatile Gas Sensor, Materials Letters, 124, 144 (2014); https://doi.org/10.1016/j.matlet.2014.03.051.

L. Sonali, S .S . Darshane, I. S. Suryavanshi, I. S. Mulla Nanostructured nickel ferrite: A liquid petroleum gas sensor, Ceramics International 35,1793 (2009); https://doi.org/10.1016/j.ceramint.2008.10.013.

L. Satyanarayana, K. M. Reddy, and S. V. Manorama, Synthesis of nano-crystalline Ni1-x Cox Mnx Fe2-x O4 : A material for liquefied petroleum gas sensing, Sensors & Actuators, B: Chemical, 89 (1–2), 62 (2003); https://doi.org/10.1016/S0925-4005(02)00429-X.

L. Satyanarayana, K. M..Reddy, & S. V. Manorama, Nanosized spinel NiFe2O4: A novel material for the detection of liquefied petroleum gas in air, Materials Chemistry and Physics, 82(1), 21–26 (2003); https://doi.org/10.1016/S0254-0584(03)00170-6.

K. M. Reddy, L. Satyanarayana, S. v. Manorama, R. D. K. Misra, A comparative study of the gas sensing behavior of nanostructured nickel ferrite synthesized by hydrothermal and reverse micelle techniques. Materials Research Bulletin, 39(10), 1491 (2004); https://doi.org/10.1016/J.MATERRESBULL.2004.04.022.

I. Sandu, L. Presmanes, P. Alphonse, P. Tailhades, Nano structured cobalt manganese ferrite thin films for gas sensor application, Thin Solid Films, 495(1–2) 130 (2006); https://doi.org/10.1016/j.tsf.2005.08.318.

N. Rezlescu, E. Rezlescu, C. L. Seva, F. Tudorache, P. D. Popa, On the effects of Ga and La ions in MgCu ferrite: Humidity sensitive electrical conduction, Crystal Research Technology, 39(6) 548 (2004); https://doi.org/10.1002/crat.200310223.

E.di. Bartolomeo, E. Traversa, M. Baroncini, V. Kotzeva, & R. V. Kumar, Solid state ceramic gas sensors based on interfacing ionic conductors with semiconducting oxides, Journal of the European Ceramic Society, 20(16), 2691 (2000); https://doi.org/10.1016/S0955-2219(00)00219-3.

A. B. Gadkari, T. J. Shinde, P. N. Vasambekar, Structural analysis of Y3+-doped Mg–Cd ferrites prepared by oxalate co-precipitation method, Materials Chemistry and Physics, 114(2–3), 505 (2009); https://doi.org/10.1016/J.MATCHEMPHYS.2008.11.011.

C. B. Kolekar, P. N. Kamble, A. S. Vaingankar, X-ray, far IR characterization and suscipibility study of Gd substituted copper cadmium ferrites, Indian Journal of Physics 68(6), 529 (1994); https://core.ac.uk/download/pdf/158962081.pdf.

A. C. F. M. Costa, M. R. Morelli, R. H. G. A. Kiminami, Microstructure and magnetic properties of Ni–Zn–Sm ferrites, Ceramica, 49, (311) 168 (2003); https://doi.org/10.1590/S0366-69132003000300011.

P. K. Roy, B. B. Nayak, J. Bera, Study on electro-magnetic properties of La3+ substituted Ni–Cu–Zn ferrite synthesized by auto-combustion method, Journal of Magnetism and Magnetic Materials, 320(6), 1128–1132 (2008); https://doi.org/10.1016/J.JMMM.2007.10.025.

X. Fan, H. Ren, Y. Zhang, S. Guo, and X. Wang, Effect of Nd on microstructure and magnetic properties of Ni-Zn ferrites, Rare Metals, 7( 3) 287(Jun. 2008); https://doi.org/10.1016/S1001-0521(08)60131-X.

Priese, C.; Töpfer, J. Phase Formation, Microstructure and Permeability of Fe-Deficient Ni-Cu-Zn Ferrites, (I): Effect of Sintering Temperature. Magnetochemistry 2021, 7, 118. https://doi.org/10.3390/ magnetochemistry7080118

K. Oura, M. Katayama, A.V. Zotov, V. G. Lifshits, A. A. Saranin, Elementary Processes at Surfaces I. Adsorption and Desorption. In: Surface Science Advanced Texts in Physics. Springer, Berlin, Heidelberg (2003); https://doi.org/10.1007/978-3-662-05179-5_12.

M. C. Desjonqueres et al., Concept in Surface Physics. Berlin, Germany: Springer-Verlag, https://doi.org/10.1007/978-3-642-97484-7.

L. M. Peng, New Developments of Electron Diffraction Theory, Advances in Imaging and Electron Physics, 90(C), 205–351 (1994); https://doi.org/10.1016/S1076-5670(08)70085-5.

S. G. Davison and M. Steslicka, Basic Theory of Surface State. Oxford,U.K.: Oxford Univ. Press, vol. 3–5, p. 61 (1992).

Garima Rana, Pooja Dhiman, Amit Kumar, Dai-Viet N. Vo, Gaurav Sharma, Shweta Sharma, Mu. Naushad, Recent advances on nickel nano-ferrite: A review on processing techniques, properties and diverse applications, Chemical Engineering Research and Design, Volume 175, 2021, Pages 182-208, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2021.08.040.

C. O. Park, S. A. Akbar, Ceramics for chemical sensing. Journal of Materials Science 38, 4611 (2003); https://doi.org/10.1023/A:1027402430153.

K. D. Schierbaum, U. Weimar, W. Göpel,, & R. Kowalkowski, Conductance, work function and catalytic activity of SnO2-based gas sensors. Sensors and Actuators B: Chemical, 3(3), 205 (1991); https://doi.org/10.1016/0925-4005(91)80007-7.

C. Xiangfeng, L. Xingqin, M. Guangyao, The catalytic effect of SmInO3 on the gas-sensing properties of CdIn2O4, Materials Science and Engineering: B, 64(1), 60 (1999); https://doi.org/10.1016/S0921-5107(99)00144-0.

X. Q. Liu, S. W. Tao, Y. S. Shen, Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process, Sensors and Actuators B: Chemical, 40 (2–3), 161 (1997); https://doi.org/10.1016/S0925-4005(97)80256-0.

M. Sugimoto, The past, present and future of ferrites, Journal of the American Ceramic Society 82(2), 269 (1999); https://doi.org/10.1111/j.1551-2916.1999.tb20058.x.

S. Tao, F. Gao, X. Liu, & O. T. Sørensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature, Materials Science and Engineering: B, 77(2), 172–176 (2000); https://doi.org/10.1016/S0921-5107(00)00473-6.

V. Lantto, P. Romppainen, Electrical studies on the reactions of CO with different oxygen species on SnO2 surfaces. Surface Science, 192(1), 243–264 (1987); https://doi.org/10.1016/S0039-6028(87)81174-3.

S. Masti, Crystallographic, Electrical And Magnetic Properties Of Gd 3+ Substituted And Non Substituted Mg-Zn Ferrites Journal of Engineering, Computers & Applied Sciences (JEC&AS) 2, (12) (2013).

N. Rezlescu, E. Rezlescu, F. Tudorache, and P. D. Popa, Some spinel oxide compounds reducing gas sensors, Sensors & Transducers Journal, 78(4), 1134-1142 (2007); http://www.sensorsportal.com.

G. Martinelli, M. C. Carotta, Sensitivity to reducing gas as a function of energy barrier in SnO2 thick-film gas sensor, Sensors and Actuators B: Chemical, 7(1–3), 717 (1992); https://doi.org/10.1016/0925-4005(92)80391-A.

K. Arshak, I. Gaidan, Effects of NiO/TiO2 addition in ZnFe2O4 based gas sensors in the form of polymer thick films, Thin Solid Films, 495(1–2), 292–298 (2006); https://doi.org/10.1016/J.TSF.2005.08.208.

C. Xiangfeng, Z. Chenmou, Sulfide-sensing characteristics of MFe2O4 (M = Zn, Cd, Mg and Cu) thick film prepared by co-precipitation method, Sensors and Actuators B: Chemical, 96(3), 504–508 (2003); https://doi.org/10.1016/S0925-4005(03)00626-9.

L. Bruno, C. Pijolat, R. Lalauze, Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: Influence of grain size and thickness on the electrical properties, Sensors and Actuators B: Chemical, 18(1–3), 195 (1994); https://doi.org/10.1016/0925-4005(94)87083-7.

R. Lalauze, C. Pijolat, S. Vincent, L. Bruno, High-sensitivity materials for gas detection, Sensors and Actuators B: Chemical, 8(3), 237–243 (1992); https://doi.org/10.1016/0925-4005(92)85024-Q.

J. M. Suh, H. W. Jang, Eom, H. Tae, S. H. Cho, T. & Kim, Light-activated gas sensing: a perspective of integration with micro-LEDs and plasmonic nanoparticles, Materials Advances, 2, 827-844 (2021); https://doi.org/10.1039/d0ma00685h.

Z. Sun, L. Liu, D. Jia, W. Pan, Simple synthesis of CuFe2O4 nanoparticles as gas sensing materials Sensors & Actuators, B: Chemical, 125(1) 144 (2007); https://doi.org/10.1016/j.snb.2007.01.050.

X. Lou, S. Liu, D. Shi, W. Chu, Ethanol sensing characteristic of CdFe2O4 sensor prepared by Sol-gel, Materials Chemistry and Physics, 105, 66 (2007); https://doi.org/10.1016/j.matchemphys.2007.04.038.

S. Darshane, I. Mulla, Influence of palladium on gas-sensing performance of magnesium ferrite nanoparticles. Materials Chemistry and Physics, 119(1–2), 319–323 (2010); https://doi.org/10.1016/J.MATCHEMPHYS.2009.09.004.

Y. L. Liu, Z. M. Liu, Y. Yang,, H. F. Yang,, G. L. Shen, R. Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials, Sensors and Actuators B: Chemical, 107(2), 600–604 (2005); https://doi.org/10.1016/J.SNB.2004.11.026.

J. Y. Patil, I. S. Mulla, S. S.Suryavanshi, Gas response properties of citrate gel synthesized nanocrystalline MgFe2O4: Effect of sintering temperature, Materials Research Bulletin, 48(2), 778–784 (2013); https://doi.org/10.1016/J.MATERRESBULL.2012.11.060.

Y. Cao, H. Qin, X. Niu, D. Jia, Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies, Ceramics International, 42(9), 10697 (2016); https://doi.org/10.1016/J.CERAMINT.2016.03.184.

R. K. Kotnala, J. Shah, B. Singh, H. Kishan, S. Singh, S. K. Dhawan, A. Sengupta, Humidity Response of Li-Substituted Magnesium Ferrite, Sensors & Actuators, B: Chemical, 129, 909 (2008); https://doi.org/10.1016/j.snb.2007.10.002.

Y. Cao, H. Qin, X. Niu, D. Jia, Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies, Ceramics International, 42(9), 10697–10703 (2016); https://doi.org/10.1016/J.CERAMINT.2016.03.184.

R. K. Kotnala, J. Shah, B. Singh, H. Kishan, S. Singh, S. K. Dhawan, A. Sengupta, Humidity Responsev of Li-Substituted Magnesium Ferrite, Sensors & Actuators, B: Chemical, 129, 909 (2008); https://doi.org/10.1016/j.snb.2007.10.002.

N. Rezlescu, N. Iftime, E. Rezlescu, C. Doroftei, P. D. Popa, Semiconducting gas sensor for acetone based on the fine grained nickel ferrite, Sensors & Actuators, B: Chemical, 114(1) 427 (2006). https://doi.org/10.1016/j.snb.2005.05.030.

A. P. Kazin, M. N. Rumyantseva, V. E. Prusakov, I. P. Suzdalev, Y. V. Maksimov, V. K. Imshennik, S. V. Novochikhin, A. M. Gaskov, Microstructure and Gas-Sensing Properties of Nanocrystalline NiFe2O4 Prepared by Spray Pyrolysis, Inorganic Materials 46, 1254 (2010); https://doi.org/10.1134/S0020168510110178.

Y. C. Liang, S. L. Liu, H. Y. Hsia, Physical Synthesis Methodology and Enhanced Gas Sensing and Photoelectrochemical Performance of 1D Serrated Zinc Oxide–Zinc Ferrite Nanocomposites, Nanoscale Research Letters 10, 1 (2015); https://doi.org/10.1186/s11671-015-1059-0.

M. S. Khandekar, N. L. Tarwal, J. Y. Patil, F. I. Shaikh, I. S. Mulla, S. S. Suryavanshi, Liquefied Petroleum Gas Sensing Performance of Cerium Doped Copper Ferrite, Ceramics International 39, 5901 (2013); https://doi.org/10.1016/j.ceramint.2013.01.010.

A. B. Gadkari, T. J. Shinde, P. N. Vasambekar, Ethanol Sensor Based on Nanocrystallite Cadmium Ferrite, AIP conference proceedings, 1665, 050001 (2015); https://doi.org/10.1063/1.4917642.

H. Farahani, R. Wagiran, M. N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review, Sensors, 14(5), 7881 (2014); https://doi:10.3390/s140507881.

Z. Sun, L. Liu, D. zengJia,W. Pan, Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials Sensors and Actuators B: Chemical, 125 (1) 144(2007); https://doi.org/10.1016/j.snb.2007.01.050.

A. Chapelle, F. Oudrhiri-Hassani, L. Presmanes, A.Barnabe, P.Tailhades, CO2 Sensing Properties of Semiconducting Copper Oxide and Spinel Ferrite Nanocomposite Thin Film. Applied Surface Science, 256(14), 4715 (2010); https://doi.org/10.1016/j.apsusc.2010.02.079.

S. Tao, F. Gao, X .Liu, O. T. Sørensen, Preparation and Gas-Sensing Properties of CuFe2O4 at Reduced Temperature, Materials Science and Engineering B 77(2), 172 (2000); https://doi.org/10.1016/S0921-5107(00)00473-6.

E. Fazio, S. Spadaro, C. Corsaro, G. Neri, S. G. Leonardi, F. Neri, N. Lavanya, C. Sekar, N. Donato, G. Neri, Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors Sensors, 21(7), 2494 (2021); https://doi.org/10.3390/s21072494.

L. Yu, S.Cao, Y. Liu, J. Wang, C. Jing, J. Zhang, Thermal and Structural Analysis on the Nanocrystalline NiCuZn Ferrite Synthesis in Different Atmospheres, Journal of magnetism and magnetic Materials, 301(1), 100-106 (2006); https://doi.org/10.1016/j.jmmm.2005.06.020.

A. C. F.Costa, M. R. Morelli, R. H. Kiminami, Combustion Synthesis: Effect of Urea on the Reaction and Characteristics of Ni-Zn Ferrite Powders Journal of Materials Synthesis and Processing 9(6), 347 (2001); https://doi.org/10.1023/A:1016356623401.

L. Junliang, Z. Wei, G. Cuijing, Z. Yanwei, Synthesis and Magnetic Properties of Quasi-Single Domain M-Type Barium Hexaferrite Powders via Sol–Gel Auto-Combustion: Effects of pH and the Ratio of Citric Acid to Metal Ions (CA/M), Journal of Alloys and Compounds, 479 (1-2), 863 (2009); https://doi.org/10.1016/j.jallcom.2009.01.081.

Y. M. Zhang, Y. T. Lin, J. L. Chen, J. Zhang, Z. Q. Zhu, Q. J. Liu, A High Sensitivity Gas Sensor for Formaldehyde Based on Silver Doped Lanthanum Ferrite, Sensors & Actuators, B: Chemical, 190, 171 (2014); https://doi.org/10.1016/j.snb.2013.08.046.

S. Singh, A. Singh, R. R. Yadav, P. Tandon, Growth of Zinc Ferrite Aligned Nanorods for Liquefied Petroleum Gas Sensing, Materials Letters, 131, 31 (2014); https://doi.org/10.1016/j.matlet.2014.05.167.

K. Mukherjee, S. B. Majumder, Reducing Gas Sensing Behaviour of Nano-Crystalline Magnesium–Zinc Ferrite Powders, Talanta, 81(4-5), 1826-1832 (2010); https://doi.org/10.1016/j.talanta.2010.03.042.

R. P. Patil, P. N. Nikam, S. B. Patil, P. D. Talap, D. R. Patil, P. P. Hankare, Structural, Magnetic and Gas Sensing Application of Novel Polyol Route Synthesized Cobalt Ferrite, Sensor Letters, 13(9) 785- (2015); https://doi.org/10.1166/sl.2015.3522.

Published
2022-09-30
How to Cite
ShedamR. M., KashidP. P., MathadS. N., DeshmukhR. B., ShedamM. R., & GadkariA. B. (2022). Ferrites gas sensors: A Review. Physics and Chemistry of Solid State, 23(3), 626-640. https://doi.org/10.15330/pcss.23.3.626-640
Section
Review