Effect of Compensation Degree on the Detecting Properties of In-doped Cd0.9Zn0.1Te crystals

Authors

  • V.M. Sklyarchuk Yuriy Fedkovych Chernivtsi National University
  • Z.I. Zakharuk Yuriy Fedkovich’ Chernivtsi National University
  • M.H. Kolisnyk Yuriy Fedkovich’ Chernivtsi National University
  • А.I. Rarenko Yuriy Fedkovich’ Chernivtsi National University
  • O.F. Sklyarchuk Yuriy Fedkovich’ Chernivtsi National University
  • P.M. Fochuk Yuriy Fedkovich’ Chernivtsi National University

DOI:

https://doi.org/10.15330/pcss.20.3.257-263

Keywords:

Cd0.9Zn0.1Te:In, ohmic contact, CSLCs, compensation degree, Schottky contact

Abstract

The electrical characteristics of In-doped Cd0.9Zn0.1Te (CZT:In) crystals with concentration of  Со = 3,5×1017 cm-3, which are used in X- and gamma-radiation detectors, were investigated. CZT:In crystals possess a weakly pronounced n-type conductivity and had a resistivity of (1 ¸ 2)*109 Ohm´cm at 293 K. In/CZT:In/In structures with ohmic contacts and Cr/CZT:In/In structures with Schottky barriers were created on their base. The temperature dependences of the resistivity in investigated material were analyzed and explained. The energy position of the deep level responsible for the material’ dark conductivity was found. Due to the study of the temperature dependencies of currents limited by space-charge and of currents of the ohmic section of the volt-ampere characteristics (I-VC), the compensation degree of CZT:In crystals is determined. It was found that Cr/CZT:In/In structures with a Schottky diode, fabricated on crystals with a lower compensation degree, possessed the best detection properties than similar structures fabricated on crystals with a greater compensation degree.

References

S.D. Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini and P. Ubertini, Review, Sensors 9, 3491 (2009) (https://doi.org/10.3390/s90503491).

A. Brambilla, P. Ouvrier-Buffet, G. Gonon, et al., IEEE Trans. Nucl. Sci. 60, 408 (2013) (https://doi.org/10.1109/TNS.2012.2226910).

Ruihua Nan, Tao Wang, Gang Xu, Man Zhu, Wanqi Jie, J. Cryst. Growth 451, 150 (2016). (https://doi.org/10.1016/j.jcrysgro.2016.07.032).

R. Triboulet, P. Siffert, CdTe and related compounds: physics, defects, technology, hetero- and nanostructures and applications: physics, CdTe-based nanostructures, and semimagnetic semiconductors, defects. European Materials Research Society series. (Oxford: Elsevier, 2010). (https://searchworks.stanford.edu/view/8596311).

A.A. Zakharchenko, A.V. Rybka, V.E. Kutny, A.I. Skrypnyk, M.A. Khazhmuradov, P.M. Fochuk, A.E. Bolotnikov, and R.B. James, Proc. SPIE 8507, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, 85071I (2012) (https://doi.org/10.1117/12.928567).

K.H. Kim, A.E. Bolotnikov, G.S. Camarda, at al., IEEE. Trans. Nucl. Sci. 59(4), (2012) (https://doi.org/10.1109/TNS.2012.2202917).

L. Davydov, P. Fochuk, A. Zakharchenko, A., Kutny, et al., IEEE Trans. Nucl. Sci. 62(4), 17779 (2015) (https://www.researchgate.net/publication/281058785_Improving_and_Characterizing_CdZnTe_Crystals_for_Detecting_Gamma-Ray_Radiation).

Pengfei Wang, Ruihua Nan and Zengyun Jian, J. of Semicond. 38(6), 062002 (2017) (https://iopscience.iop.org/article/10.1088/1674-4926/38/6/062002).

M. Amman, J.S. Lee, P.N. Luke, H. Chen, et al., IEEE Trans. Nucl. Sci. 56(3), 795 (2009) (https://doi.org/10.1109/TNS.2008.2010402).

U.N. Roy, S. Weiler, J. Stein, M. Groza, Nuclear Instruments and Methods in Physics Research Section A, Accelerators Spectrometers Detectors and Associated Equipment 652(1), 162 (2011) (https://doi.org/10.1016/j.nima.2011.01.143).

U.N. Roy, A. Burger, R.B. James, J. Cryst. Growth 379, 57 (2013). (https://doi.org/10.1016/j.jcrysgro.2012.11.047).

S.M. Koohpayeh, Single crystal growth by the traveling solvent technique: A review. (PROG CRYST GROWTH CH., 2016).

P. Fochuk, Z. Zakharuk, Ye. Nykonyuk, I. Rarenko, M. Kolesnik, A. E. Bolotnikov, G. Yang, and R.B. James, IEEE Trans. Nucl. Sci. 63(3) 1839 (2016) (https://doi.org/10.1109/TNS.2016.2548425).

Boru Zhou, Wanqi Jie, Tao Wang, Liying Yin, J. Cryst. Growth 483 (2017). (https://doi.org/10.1016/j.jcrysgro.2017.12.003).

S.I. Budzulyak, D.V. Korbutyak, L.A. Demchyna, V.M. Yermakov, N.D. Vakhnyak, I.M. Rarenko, Z.I. Zakharuk, M.H. Kolisnyk, P.M. Fochuk, S.H. Dremlyuzhenko, I.Z. Misevych, Sposib vyroshchuvannya monokrystaliv CdTe ta yoho tverdykh rozchyniv CdxZn1-xTe, CdxMn1-xTe, Patent №о 113185, Ukrayina, [in ukr.] Byul. №24, publ. 26.12.2016.

S.G. Dremlyuzhenko, Z.I. Zakharuk, P.M. Fochuk, A.Y. Savchuk, Physics and Chemistry of Solids State 8(4), 748 (2007).

T. Toshifumi T, S. Adachi, H. Nakanishi, K. Ohtsuka, Jpn. Appl. Phys. 32, 3496 (1993).

Jitendra Kumar Tripathi, S.S. Harilal, S.S. Harilal, Materials Research Express. 1(3), 035904 (2014) (https://doi.org/10.1088/2053-1591/1/3/035904).

M. Lampert and P. Mark, Inzhektsionnyye toki v tverdykh telakh [in rus.] (Mir, Moscow, 1973).

Xu Yadong, Jie Wanqi, Pall Sellin, Tao Wang, et al, J. of Phys. D: Appl. Phys. 42(3), 03505, 082002 (2009) (https://iopscience.iop.org/article/10.1088/1674-4926/30/8/082002).

L.S. Dang, G. Neu, and R. Romestain, Solid State Commun. 44(8), 1187 (1982).

P. Ravindran, Carrier effective mass calculations (Computational Condensed Matter Physics, Spring, 2015) (http://folk.uio.no/ravi/CMT15. http://folk.uio.no/ravi/cutn/ccmp/9-EffectiveMass1.pdf).

B. Segall, M.R. Lorenz, R.E. Halsted, Phys. Rev. 129, 2471 (1963).

G.G. Roberts, F.W. Smidlin, Phys. Rev. 180, 785 (1969).

A.V. Malovichko, S.V. Svechnikov, K.P. Shulga, Ukr. Phiz. J. [in ukr] 20 (2) (1975).

R.H. Nan, W.Q. Jie, G.Q. Zha, J. Nucl. Instrum. Meth. A, 705, 32 (2013) (https://doi.org/10.1016/j.nima.2012.12.081).

M. Zanichelli, A. Santi, M. Pavesi & A. Zappettini, J. Phys. D: J. Appl. Phys. 46(36), 365103 (2013) (https://iopscience.iop.org/article/10.1088/0022-3727/46/36/365103).

Published

2019-10-18

How to Cite

Sklyarchuk, V., Zakharuk, Z., Kolisnyk, M., Rarenko А., Sklyarchuk, O., & Fochuk, P. (2019). Effect of Compensation Degree on the Detecting Properties of In-doped Cd0.9Zn0.1Te crystals. Physics and Chemistry of Solid State, 20(3), 257–263. https://doi.org/10.15330/pcss.20.3.257-263

Issue

Section

Scientific articles