Synthesis and Photoluminescence Properties of Ca5(PO4)3F: Ln (Ln: Dy3+, Eu3+ and Sm3+) Phosphors for near UV-based solid state lighting

  • C.M. Nandanwar Department of Physics, N.H. College, Bramhapuri, Chandrapur 441206, India
  • N.S. Kokode Department of Physics, N.H. College, Bramhapuri, Dist-Chandrapur, 441206, India
Keywords: Wet chemical synthesis, XRD, Photoluminescence, Phosphor, Lanthanide doped, CIE chromaticity coordinates, Solid state lighting

Abstract

The wet chemical synthesis of Ca5(PO4)2F host with lanthanide doped Dy3+, Eu3+ and Sm3+ was reported. The X-ray diffraction (XRD), structural and photoluminescence characteristics of phosphors were thoroughly investigated. The hexagonal system with the space group P 63/m (176) was verified by X-ray powder diffraction. Under UV excitation (352 nm), Ca5(PO4)2F:Dy3+ emits 481 nm (blue) and 575 nm (yellow), corresponding to 4F9/26H15/2 (magnetic dipole) and 4F9/26H13/2 (electric dipole) transitions, respectively. When Ca5(PO4)2F:Eu3+ phosphor was excited at 394 nm, the emission spectra showed strong bands at 591 nm (orange) and 614 nm (red). When excited at 403 nm, the emission spectra of Sm3+ activated Ca5(PO4)2F phosphor displayed emission peaks at 565 nm (yellow) and 599 nm (orange), respectively. The research analyses the photoluminescence characteristics of Ca5(PO4)3F: Ln (Ln: Dy3+, Eu3+ and  Sm3+)  as a possible material for near UV-based solid-state lighting.

References

G. Wakefield, E. Holland, P.J. Dobson, J. L. Hutchison, Luminescence Properties of Nanocrystalline Y2O3:Eu, Advanced Materials 13, 1557 (2001); https://doi.org/10.1002/1521-4095(200110)13:20<1557::AID-ADMA1557>3.0.CO;2-W.

A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, R. G. M. V. Shankar, Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting, Chemistry of Materials 18, 3314 (2006); https://doi.org/10.1021/cm060898c.

Y. Q. Li, A. C. A. Delsing, G. de With, H.T. Hintzen, Luminescence Properties of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors, Chemistry of Materials 17, 3242 (2005); https://doi.org/10.1021/cm050175d.

Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Nanomedicine ,Chemical Society Reviews 41, 2590 (2012); https://doi.org/10.1039/C2CS90005J.

P. J. Yadava, C. P. Joshia, S.V. Moharilb, Fluorescent and chromatic properties of visible-emitting phosphor KLa(MoO4)2:Sm3+, J. Lumin. 136, 1-4 (2013); https://doi.org/10.1016/j.jallcom.2013.01.063.

D. C. Huang, Y. F. Zhou, W. T. Xu, Z. F. Yang, Z. G. Liu, M. C. Hong, Y. H. Lin, J. C. Yu, Photoluminescence properties of M3+ (M3+ = Bi3+, Sm3+) activated Na5Eu(WO4)4 red-emitting phosphors for white LEDs, J. Alloys Compd. 554, 312-318 (2013); https://doi.org/10.1016/j.jallcom.2012.11.172.

C. Nandanwar, A. Yerpude, N. Kokode and S. Dhoble, Wet chemical synthesis of BiPO4:Eu3+ phosphor for w-LED application, Luminescence, 1, 1 (2022); https://doi.org/10.1002/bio.4340.

M. B. Reddy, C. N. Raju, S. Sailaja, B. V. Rao, B. S. Reddy, Sol–gel synthesis, structural and optical properties of rare earth ions (Sm3+ or Dy3+) activated Ca3Ga2Si3O12 powder phosphors, J. Lumin. 131, 2503- 2508 (2011); https://doi.org/10.1016/j.jlumin.2011.06.015.

R. G. Pappalardo, J. Walsh, R. Hunt, Cerium‐Activated Halophosphate Phosphors: I. Strontium Fluoroapatites, J. Electrochem. Soc. 130, 2087 (1983); https://iopscience.iop.org/article/10.1149/1.2119528/meta.

M. Kottaisamy, R. Jagannathan, P. Jeyagopal, R.P. Rao, R.L. Narayanan, Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH$, J. Phys. D: Appl. Phys. 27, 2210 (1994); https://iopscience.iop.org/article/10.1088/0022-3727/27/10/034/meta.

M. Gaft, G. Panczer, R. Reisfeld, E. Uspensky, Laser-induced time-resolved luminescence as a tool for rare-earth element identification in minerals, Phys. Chem. Miner. 28, 347 (2001); https://link.springer.com/article/10.1007/s002690100163.

P. Yang, G. Q. Yao, J. H. Lin, Photoluminescence of Ce3+ in haloapatites Ca5(PO4)3X, Inorg. Chem. Commun. 7, 302 (2004); https://doi.org/10.1016/j.inoche.2003.12.001.

R. Sahoo, S. K. Bhattacharya, R. Debnath, A new type of charge compensating mechanism in Ca5(PO4)3F:Eu3+ phosphor, J. Solid. State. Chem. 175, 218 (2003); https://doi.org/10.1016/S0022-4596(03)00249-4.

S. P. Sinha, E. Butter, Analysis of the fluorescence spectra of europium(III)-bis-phenanthroline-tris-carboxylate complexes, Mol. Phys. 16, 285 (1969); https://doi.org/10.1080/00268976900100331.

S. K. Ramteke, A. N. Yerpude, N. S. Kokode, V. V. Shinde and S. J. Dhoble, J. Mater Sci: Mater Electron, 31, 6506–6509 (2020); https://doi.org/10.1007/s10854-020-03208-x.

[16] C. Gorller-Walrand, K. Binnemans, K. A. Gschneidner, L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, 23, 121 (1996); https://doi.org/10.1002/crat.2170300708.

X. Yan, Z. Fu, X. Wang, J. H. Jeong, Hydrothermal synthesis and luminescence properties of Ca5(PO4)3F: Eu3+ microrods, Journal of Luminescence, 152, 226–229 (2014); https://doi.org/10.1016/j.jlumin.2013.10.029.

J. Zhang, Y. Wang, Y. Wen, F. Zhang, B. Liu, Luminescence properties of Ca10K(PO4)7:RE3+ (RE = Ce, Tb, Dy, Tm and Sm) under vacuum ultraviolet excitation, J. Alloy. Comp., 509, 4649-4652 (2011); https://doi.org/10.1016/j.jallcom.2011.01.125.

A. Watras, P.J. Deren, R. Pazik, Luminescence properties and determination of optimal RE3+ (Sm3+, Tb3+ and Dy3+) doping levels in the KYP2O7 host lattice obtained by combustion synthesis, New J. Chem. 38, 5058-5068 (2014); https://pubs.rsc.org/en/content/articlelanding/2014/nj/c4nj00451e/unauth.

D. H. Gahane, N. S. Kokode, P. L. Muthal, S. M. Dhopte and S. V. Moharil, Effect of cation mixing on luminescence of Eu2+ in SrCl2, Journal of Luminescence 130, 254-257 (2010) https://doi.org/10.1016/j.jlumin.2009.08.017.

Q. Mao, Q. Yuan, Z. Ji, J. Xi, Z. Kong, J. Zhang, Effects of boric acid on structural and luminescent properties of BaAl2O4:(Eu2+, Dy+) phosphors, Res. Chem. Intermediates. 42, 6557 (2016); https://link.springer.com/article/10.1007/s11164-016-2480-4.

Q. Liu, Y. Liu, Z. Yang, X. Li and Y. Han, UV-excited red-emitting phosphor Eu3+-activated Ca9Y(PO4)7, Spectrochim. Acta, Part A, 87, 190 (2012); https://doi.org/10.1016/j.saa.2011.11.035.

Kaur, M. Jayasimhadri and A. S. Rao, A novel red emitting Eu3+ doped calcium aluminozincate phosphor for applications in w-LEDs ,J. Alloys Compd., 697, 367-373 (2017); https://doi.org/10.1016/j.jallcom.2016.12.150.

B. P. Kore, A. Kumar, A. Pandey, R. E. Kroon, J. J. Terblans, S. J. Dhoble, H. C. Swart, Spectroscopic Investigation of Up-Conversion Properties in Green Emitting BaMgF4:Yb3+,Tb3+ Phosphor, Inorg. Chem., 56, 4996-5005 (2017); https://doi.org/10.1021/acs.inorgchem.7b00044.

Published
2022-09-29
How to Cite
NandanwarC., & KokodeN. (2022). Synthesis and Photoluminescence Properties of Ca5(PO4)3F: Ln (Ln: Dy3+, Eu3+ and Sm3+) Phosphors for near UV-based solid state lighting . Physics and Chemistry of Solid State, 23(3), 597-603. https://doi.org/10.15330/pcss.23.3.597-603
Section
Scientific articles (Physics)