The exciton spectrum of the cylindrical quantum dot - quantum ring semiconductor nanostructure in an electric field
DOI:
https://doi.org/10.15330/pcss.23.4.793-800Keywords:
Quantum Dot, Nanoring, Exciton, Energy spectrum, Intensity, Electric fieldAbstract
In the model of effective masses and rectangular potentials for an electron and a hole, the influence of a uniform electric field on the energy spectrum and wave functions of the exciton and the oscillator strengths of interband quantum transitions in the semiconductor (GaAs/AlxGa1-xAs) quantum dot-quantum ring nanostructure is theoretically investigated. The stationary Schrödinger equations for noninteracting quasiparticles in the presence of an electric field cannot be solved analytically. For their approximate solution, the unknown wave functions are sought in the form of an expansion over the complete set of cylindrically symmetric wave functions, and the electron energy is found by solving the corresponding secular equation. The exciton binding energy is found using perturbation theory.
The dependences of the energy spectra, the wave functions of an electron, hole, and exciton, and the intensity of interband optical quantum transitions on the magnitude of the electric field strength are analyzed.
References
T. Kuroda, T. Mano, T. Ochiai,. S.Sanguinetti, K.Sakoda, G.Kido and N.Koguchi, Optical transitions in quantum ring complexes, Physical Review B, 72(20), 205301 (2005); https://doi.org/10.1103/PhysRevB.72.205301.
Yu. D. Sibirmovskii, I.S. Vasil’evskii, A.N. Vinichenko, I.S. Eremin, D.M. Znigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, and M.N. Strikhanov, Photoluminescence of GaAs/AlGaAs quantum ring arrays, Semiconductors, 49(5), 638 (2015); https://doi.org/10.1134/S106378261505022X.
V.D. Pham, K. Kanisawa and S. Folsch, Quantum Rings Engineered by Atom Manipulation, Phys. Rev. Lett., 123, 066801 (2019); https://doi.org/10.1103/PhysRevLett.123.066801.
F. Suarez, D. Granados, M.L. Dotor, J.M. Garcia, Laser devices with stacked layers of InGaAs/GaAs quantum rings, Nanotechnology, 15, S126 (2004); https://doi.org/10.1088/0957-4484/15/4/003.
J.H. Dai, Y. Lin, S.Ch. Lee, Voltage Tunable Dual Band In(Ga)As Quantum Ring Infrared Photodetector, IEEE Photonics Technology Letters, 19(19), 1511 (2007); https://doi.org/10.1109/LPT.2007.903344.
M.J. Szopa, E. Zipper, Flux qubits on semiconducting quantum ring, Journal of Physics: Conference Series, 213, 012006 (2010); http://doi.org/10.1088/1742-6596/213/1/012006.
J.M. Llorens, C. Trallero-Giner, A. Garcıa-Cristobal, A. Cantarero, Electronic structure of a quantum ring in a lateral electric field, Physical Review B, 64, 035309 (2001); https://doi.org/10.1103/PhysRevB.64.035309.
J.M. Llorens, C. Trallero-Giner, A. Garcia-Cristobal, A. Cantarero A., Energy levels of a quantum ring in a lateral electric field, Microelectronics Journal, 33, 355 (2002); http://doi.org/10.1016/S0026-2692(01)00131-8.
F.J. Culchac, N. Porras-Montenegro, J.C. Granada and A. Latge, Energy spectrum in a concentric double quantum ring of GaAs–(Ga,Al)As under applied magnetic fields, Microelectronics Journal, 39, 402 (2008); https://doi.org/10.1016/j.mejo.2007.07.063.
F.J. Culchac, N. Porras-Montenegro, A. Latge, GaAs–(Ga, Al)As double quantum rings: confinement and magnetic field effects, J. Phys.: Condens. Matter, 20(28), 285215 (2008); http://doi.org/10.1088/0953-8984/20/28/285215.
О.М. Маkhanets, V.I. Gutsul, A.I. Kuchak, Electron Energy Spectrum and Oscillator Strengths of Intra-band Quantum Transitions in Double Semiconductor Nanorings in Magnetic Field, Journal of Nano- and Electronic Physics, 9, 06015 (2017); http://doi.org/10.21272/jnep.9(6).06015.
O.M. Makhanets, V.I. Gutsul., A.I. Kuchak, Electron energy spectrum and oscillator strengths of quantum transitions in double quantum ring nanostructure driven by electric field, Condensed Matter Physics, 21(4), 43704 (2018); https://doi.org/10.48550/arXiv.1812.08551.
O.M. Makhanets, V.I. Gutsul, I.P. Koziarskyi, and A.I. Kuchak, Spectral Parameters of an Exciton in Double Semiconductor Quantum Rings in an Electric Field, Journal of Nano- and Electronic Physics, 13(2), 02024 (2021); https://doi.org/10.21272/jnep.13(2).02024.
A. Shahbandari, M.A. Yeranosyan, A.L. Vartanian, Polaron states in a double quantum ring structure in the presence of electric and magnetic fields, Superlattices and Microstructures, 57, 85 (2013); https://doi.org/10.1016/j.spmi.2013.01.011
A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford & New York, 1976).
M. Masale, Oscillator strengths for optical transitions in a hollow cylinder, Physica B, 292, 241 (2000); https://doi.org/10.1016/S0921-4526(00)00471-3.