Direct magnetic and surface relief patterning using carbazole-based azopolymer

  • O. Paiuk V.E. Lashkaryov Institute of Semiconductors Physics, NAS in Ukraine, Kyiv, Ukraine
  • A. Meshalkin Institute of Applied Physics, Chisinau, Moldova
  • A. Stronski V.E. Lashkaryov Institute of Semiconductors Physics, NAS in Ukraine, Kyiv, Ukraine
  • E. Achimova Institute of Applied Physics, Chisinau, Moldova
  • C. Losmanschii Institute of Applied Physics, Chisinau, Moldova
  • V. Botnari Institute of Applied Physics, Chisinau, Moldova
  • A. Korchovyi V.E. Lashkaryov Institute of Semiconductors Physics, NAS in Ukraine, Kyiv, Ukraine
  • M. Popovych V.E. Lashkaryov Institute of Semiconductors Physics, NAS in Ukraine, Kyiv, Ukraine
Keywords: azopolymer, polyepoxypropylcarbazole, methyl red, thin films, recording media, holographic gratings, direct recording, surface and magnetic relief


The results on using of carbazole-based azopolymer layers (Polyepoxypropylcarbazole:Methyl Red with magnetic particles of Fe2SO4) for the recording of 1-D and 2-D surface relief gratings are presented in this report. Morphology study using AFM and MFM of obtained structures has shown their good quality. Surface relief gratings with profile height up to 1.2 µm were obtained during the holographic recording using blue laser. Along with surface relief grating it was shown the direct formation of magnetic relief. Possibility of simultaneous direct fabrication of surface and magnetic relief by optical holographic recording using azopolymer thin films as recording media was shown.


V.M. Kryshenik, Y.M. Azhniuk, V.S. Kovtunenko, All-optical patterning in azobenzene polymers and amorphous chalcogenides, Journal of Non-Crystalline Solids, 512, 112 (2019);

V.V. Podlipnov, N.A. Ivliev, S.N. Khonina, D.V. Nesterenko, A.Yu. Meshalkin, E.A. Achimova, Formation of microstructures on the surface of a carbasole-containing azopolymer by the action of laser beams, J. Phys.: Conf. Ser., 1368, 022069 (2019);

A. Priimagi, A. Shevchenko, Azopolymer-based micro- and nanopatterning for photonic applications, J. Polym. Sci. B Polym. Phys., 52, 163 (2014);

J.V. Grazulevicius, P. Strohriegl, J. Pielichowski, K. Pielichowski, Carbazole-containing polymers: synthesis, properties and applications, Progress in Polymer Science. 28 (9), 1297 (2003);

S.G. Sorkhabi, R. Barille, S. Ahmadi-Kandjani, S. Zielinska, E. Ortyl, A new method for patterning azopolymer thin film surfaces, Opt. Mater., 66, 573 (2017);

A. Andries, V. Abaskin, E. Achimova, A. Meshalkin, A. Prisacar, S. Sergheev, S. Robu, L. Vlad, Application of carbazole-containing polymer materials as recording media, Phys. Status Solidi A, 208, 1837 (2011);

F.T. O'Neill, A.J. Carr, S.M. Daniels, M.R. Gleeson, J.V. Kelly, J.R. Lawrence, J.T. Sheridan, Refractive elements produced in photopolymer layers, Journal of Materials Science, 40(15), 4129 (2005);

T. Tanaka, Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium, Optics Express, 17(16), 14132 (2009);

A. Khan, G.D. Stucky, C.J. Hawker, High‐Performance, Non-diffusive Crosslinked Polymers for Holographic Data Storage, Advanced Materials, 20(20), 3937 (2008);

J.T. Sheridan, M.R. Gleeson, C.E. Close, J.V. Kelly, Optical response of photopolymer materials for holographic data storage applications, J. Nanosci. Nanotechnol., 7(1), 232 (2007);

A. Gerbreders, O. Shimane, V. Kolobjonoks, J. Teteris, UV optical record and electron beam lithography in polymer films, IOP Conf. Ser.: Mater. Sci. Eng., 38, 012027 (2012);

J. Guo, S. Liu, M.R. Gleeson, J.T. Sheridan, Study of photosensitizer diffusion in a photopolymer material for holographic applications, Optical Engineering 50(1), 015801 (2011);

K. Curtis, L. Dhar, L. Murphy, A.J. Hill, Future Developments in Holographic Data Storage: From Theory to Practical Systems, (Wiley, 2010).

V.V. Bivol, S.V. Robu, A.M. Prisacari, A.Yu. Meshalkin, L.A. Vlad, M.I. Karaman, Study of sensitometric and holographic properties of photoresist media based on carbazole-containing polymers sensitized with triiodomethane and pyranphotochromic materials, High Energy Chemistry, 40(3), 178 (2006);

A.V. Stronski and M. Vlček, Imaging properties of As40S40Se20 layers, Optoelectronics Review, 8(3), 263(2000).

A. Stronski, L. Revutska, A. Meshalkin, O. Paiuk, E. Achimova, A. Korchovyi, K. Shportko, O. Gudymenko, A. Prisacar, A. Gubanova, G. Triduh, Structural properties of Ag–As–S chalcogenide glasses in phase separation region and their application in holographic grating recording, Optical Materials 94, 393 (2019);

A. Andriesh, S. Sergheev, G. Triduh, A. Meshalkin, Diffraction optical structures on the basis of chalcogenide glasses and polymers, J. Optoelectron. Adv. M. 9(10), 3007 (2007).

M. Vlcek, S. Schroeter, S. Brueckner, S. Fehling, A. Fiserova, Direct fabrication of surface relief gratings in chalcogenide glasses by excimer laser interference lithography, Journal of Materials Science: Materials in Electronics 20(1), 290 (2009);

A. Stronski, E. Achimova, O. Paiuk, A. Meshalkin, V. Abashkin, O. Lytvyn, S. Sergeev, A. Prisacar, P. Oleksenko, G. Triduh, Optical and Electron-Beam Recording of Surface Relief’s Using Ge5As37S58–Se Nanomultilayers as Registering Media, Journal of Nano Research 39, 96 (2016);

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, Photoassisted holography in azodye doped polymer films, The Journal of Physical Сhemistry. B, 120(43), 11317 (2016);

A. Stronski, O. Paiuk, A. Gudymenko, V. Klad’ko, P. Oleksenko, N. Vuichyk, M. Vlček, I. Lishchynskyy, E. Lahderanta, A. Lashkul, A. Gubanova, Ts. Krys’kov, Effect of doping by transitional elements on properties of chalcogenide glasses, Ceramics International 41, 7543 (2015);

J. Guo, M.R. Gleeson, J.T. Sheridan, A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage, Physics Research International, 2012, 803439 (2012);

A. Stronski, E. Achimova, O. Paiuk, A. Meshalkin, A. Prisacar, G. Triduh, P. Oleksenko, P. Lytvyn, Direct Magnetic Relief Recording Using As40S60: Mn–Se Nanocomposite Multilayer Structures, Nanoscale Research Letters 12, 286 (2017);

O. Paiuk, A. Meshalkin, A. Stronski, E. Achimova, K. Losmanschii, A. Korchovyi, Z. Denisova, V. Goroneskul, P. Oleksenko, Direct Surface Patterning Using Carbazole-Based Azopolymer, 5th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2021, IFMBE Proceedings, (Springer, Cham,2022);

Yasuo Tomita, Naoaki Suzuki, and Katsumi Chikama, Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers, Opt. Lett. 30(8), 839 (2005);

Yasuo Tomita, Eiji Hata, KeisukeMomose, ShingoTakayama, Xiangming Liu, Katsumi Chikama, Jürgen Klepp, Christian Pruner& Martin Fally, Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics, J.Mod.Opt. 63(53), 511 (2016);

How to Cite
PaiukO., MeshalkinA., StronskiA., AchimovaE., LosmanschiiC., BotnariV., KorchovyiA., & PopovychM. (2023). Direct magnetic and surface relief patterning using carbazole-based azopolymer. Physics and Chemistry of Solid State, 24(1), 197-201.
Scientific articles (Physics)