Effect of yttrium doping on the photocatalytic properties of ZnO thin films
DOI:
https://doi.org/10.15330/pcss.24.3.422-428Keywords:
zinc oxide, photocatalysis, photodegradation, absorption spectraAbstract
Zinc oxide films with different levels of yttrium doping are deposited on glass substrates, using radio-frequency magnetron sputtering. Photocatalytic properties were investigated for such Y-doping weight concentration: 0, 2.4, 3.9, 4.7 wt. %. The studies showed that the Y-doping significantly improves the photocatalytic activity of the ZnO thin films. It was shown that the ZnO:Y 3.9 wt. % presents the highest degradation efficiency of 100 % during 80 minutes and the largest rate constant 9.6 · 10-2 min-1 among all samples.
References
A.A. Yaqoob, T. Parveen, K. Umar, I. Mohamad, N. Mohamad, Role of Nanomaterials in the Treatment of Wastewater: A Review, Water, 12(2), 495 (2020); http://doi.org/10.3390/w12020495.
O.E. Baibara, M.V. Radchenko, V.A. Karpyna, A.I. Ievtushenko, A Review of the Some Aspects for the Development of ZnO Based Photocatalysts for a Variety of Applications, Physics and Chemistry of Solid State, 22(3), 585 (2021); http://doi.org/10.15330/pcss.22.3.585-594.
S. Kumar, R. Kavitha, C. Sushma, Doped zinc oxide nanomaterials: structure–electronic properties and photocatalytic applications, Surface Science of Photocatalysis, 285 (2020); http://doi.org/10.1016/b978-0-08-102890-2.00009-9.
T. Pandiyarajana, R. Mangalarajaa, B. Karthikeyan, R. Udayabhaskar, D. Contrerase, S. Sepulveda-Guzman, M. Gracia-Pinillagh, Influence of RE (Pr3+, Er3+, Nd3+) doping on structural, vibrational and enhanced persistent photocatalytic properties of ZnO nanostructures, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 268, 120679 (2022);
S. Selvaraj, M. Mohan, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light, Materials Science in Semiconductor Processing, 103 (2019); http://doi.org/10.1016/j.mssp.2019.104622.
A.L.T. Zheng, C.A.C. Abdullah, E.L.T. Chung, Y. Andou, Recent progress in visible light-doped ZnO photocatalyst for pollution control, International Journal of Environmental Science and Technology, (2022); http://doi.org/10.1007/s13762-022-04354-x.
N. Gonçalves, M. Paganini, P. Armillotta, E. Cerrato, P. Calza, The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation, Journal of Environmental Chemical Engineering, 7(6), 103475 (2019); http://doi.org/10.1016/j.jece.2019.103475.
J. González-Crisostomo, R. López-Juárez, V. Petranovskii, Photocatalytic Degradation of Rhodamine B Dye in Aqueous Suspension by ZnO and M-ZnO (M = La3+, Ce3+, Pr3+ and Nd3+) Nanoparticles in the Presence of UV/H2O2, Processes, 9(10), 1736 (2021); http://doi.org/10.3390/pr9101736.
N. Sang, N. Quan, N. Tho, N. Tuan, T. Tung, Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance, Semiconductor Science and Technology, 34(2), 025013 (2019); http://doi.org/10.1088/1361-6641/aaf820.
L. Wang, W. Ma, J. Ma, G. Shao, Growth of Well-aligned Ag-doped ZnO Nanorods Arrays on FTO Substrate Using Electrochemical Approach: Optical Properties and Photocatalytic Activity, International Journal of Electrochemical Science, 14, (2019); http://doi.org/10.20964/2019.09.81.
Q. Bei, H. Yulong, L. Hongfang, D. Zehua, Photocatalytic Degradation and Toxic Effects of Ag-Doped ZnO Nanocrystallites, Journal of Nanoscience and Nanotechnology, 11(11), 9513 (2011); http://doi.org/10.1166/jnn.2011.5281.
I. Massoudi, T. Ghrib, A.L. Al-otaibi, K. Al-hamadah, S. Al-malky, M. Al-otabi, M. Al-yatimy, Effect of Yttrium Substitution on Microstructural, Optical, and Photocatalytic Properties of ZnO Nanostructures, Journal of Electronic Materials, 49, 5353 (2020); http://doi.org/10.1007/s11664-020-08274-9.
U. Alama, A. Khana, W. Razaa, A. Khanb, D. Bahnemannc, M. Muneer, Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity, Catalysis Today, 284, 169 (2017); http://doi.org/10.1016/j.cattod.2016.11.037.
T. Rungsawanga, S. Sujinnapramb, S. Nilphaic, S. Wongrerkdeeb, Influence of yttrium doping on ZnO nanoparticles for enhanced photocatalytic degradation of methylene blue, Digest Journal of Nanomaterials and Biostructures, 16(4), 1209 (2021);
H. Parangusan, D. Ponnamma, M. Al-Maadeed, A. Marimuthu, Nanoflower-like Yttrium-doped ZnO Photocatalyst for the Degradation of Methylene Blue Dye, Photochemistry and Photobiology, 94(2), 237 (2018); http://doi.org/10.1111/php.12867.
P. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, V. Ponnusami, Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation, Arabian Journal of Chemistry, 9, S1618 (2016); http://doi.org/10.1016/j.arabjc.2012.04.023.
S.K. Sharma, R. Gupta, G. Sharma, K. Vemula, A.R. Koirala, N.K. Kaushik, E.H. Choi, D.Y. Kim, L.P. Purohit, B.P. Singh, Photocatalytic performance of yttrium-doped CNT-ZnO nanoflowers synthesized from hydrothermal method, Materials Today Chemistry, 20, 100452 (2021); http://doi.org/10.1016/j.mtchem.2021.100452.
B. Turko U. Mostovoy, M. Kovalenko, Y. Eliyashevskyi, Y. Kulyk, O. Bovgyra, V. Dzikovskyi, A. Kostruba, R. Vlokh, V. Savaryn, V. Stybel, B. Tsizh, V. Majevska, Effect of dopant concentration and crystalline structure on absorption edge of ZnO:Y films, Ukrainian Journal of Physical Optics, 22(1), 31 (2021); https://doi.org/10.3116/16091833/22/1/31/2021.
L.I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).
S. Anandan, S. Muthukumaran, Influence of yttrium on optical, structural and photoluminescence properties of ZnO nanopowders by sol–gel method, Optical Materials, 35(12), 2241 (2013); https://doi.org/10.1016/j.optmat.2013.06.009.
A. Bouaine, H. Guendouz, G. Schmerber, Y. Zehouma, Synthesis and characterization of Y-doped ZnO thin films prepared by spin-coating technique, Australian Journal of Basic and Applied Sciences, 13, 49 (2019); https://doi.org/10.22587/ajbas.2019.13.7.8.
A. Youvanidha, B. Vidhya, P. Issac Nelson, R. Rathes Kannan, S.K. Suresh Babu, International Conference on Inventive Material Science Applications (ICIMA, 2019). P. 2166; https://doi.org/10.1063/1.5131610.
O. Bazta, A. Urbieta, J. Piqueras, P. Fernández, M. Addou, J.J. Calvino, A.B. Hungría, Influence of yttrium doping on the structural, morphological and optical properties of nanostructured ZnO thin films grown by spray pyrolysis, Ceramics International, 45(6), 6842 (2019); https://doi.org/10.1016/j.ceramint.2018.12.178.
L. Toporovska, B. Turko, M. Savchak, M. Seyedi, I. Luzinov, A. Kostruba, V. Kapustianyk, A. Vaskiv, Zinc oxide: reduced graphene oxide nanocomposite film for heterogeneous photocatalysis, Optical and Quantum Electronics, 52(1), 1 (2020); https://doi.org/10.1007/s11082-019-2132-1.
D. Das, P. Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering, RSC Advances, 4(67), 35735 (2014); https://doi.org/10.1039/c4ra06063f.
L. Toporovska, A. Hryzak, B. Turko, V. Rudyk, V. Tsybulskyi, R. Serkiz, Photocatalytic properties of zinc oxide nanorods grown by different methods, Optical and Quantum Electronics, 49(12), 1 (2017); https://doi.org/10.1007/s11082-017-1254-6.