Impact of Cd+2 substitutions on structural and mechanical properties of Co0.6Ni0.4-xCdxFe2O4 (0.00≤ x≤0.40) system

Authors

  • P. Kashid K.L.E Institute of Technology, Hubballi, Karnataka, India
  • S.N. Mathad KLE Institute of Technology, Huballi, India
  • Mahadev R. Shedam Visvesvaraya Technological University, Jnana Sangama, Belagavi, India

DOI:

https://doi.org/10.15330/pcss.24.4.595-602

Keywords:

Co-precipitation method, cobalt ferrite, Cd substitution, texture coefficients, vibrational modes, mechanical properties

Abstract

This article presents the structural and mechanical properties of Co0,6Ni0,4-xCdxFe2O4spinel ferrite nanoparticles. The as prepared samples were characterized by thermo-gravimetric differential thermal analysis to examine their phase transition. TGA/DTA analysis confirmed the reaction is endothermic in nature and the process completion temperature around 714.24oC is good for annealing the prepared ferrite powder. X-ray diffraction pattern revealed, Co0,6Ni0,4-xCdxFe2O4 have been well crystallized to spinel crystal structure. The average crystallite size ranging from 14.52nm to 16.92nm. FTIR spectra showed, two significant absorption bands (ν1 and ν2) in between 400 cm−1and 600 cm−1confirmed the spinel structured ferrites. Morphological observations revealed, the grain size of prepared ferrites lies in the range 0.85 to 0.21 μm. Raman spectra peak positions of both tetrahedral and octahedral sublattice shifted towards higher energy position.

References

S.I. Ahmad, Nano cobalt ferrites: Doping, Structural, Low-temperature, and room temperature magnetic and dielectric properties – A comprehensive review, J. Magn. Magn. Mater., 562, 169840 (2022); https://doi.org/10.1016/j.jmmm.2022.169840.

S. Rasheed, R.Ali Khan, F.Shah, A.Rahim, A.R.Khan, Enhancement of electrical and magnetic properties of cobalt ferrite nanoparticles by co-substitution of Li-Cd ions, J. Magn. Magn. Mater., 471, 236 (2019); https://doi.org/10.1016/j.jmmm.2018.09.073.

S. Jauhar, J. Kaur, A. Goyal, S. Singhal, Tuning the properties of cobalt Ferrite: A road towards diverse applications,RSC Advances. 6, 97694 (2016); https://doi.org/10.1039/C6RA21224G.

K. Nejatiand, R. Zabihi, Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method,Chem Cent J., 6, 23 (2012).

A.S. Molakeri, S. Kalyane, A.B. Kulkarni, S.N. Mathad, Elastic Properties of Nickel Ferrite Synthesized by Combustion and Microwave Method using FT-IR Spectra, Int. J. Adv. Sci. Eng., 3 (4), 422 (2017).

M.A. Hakim, S.K.Nath, S.S.Sikder,K.H.Maria, Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites,J. Phys. Chem. Solids, 74 (9), 1316 (2013); https://doi.org/10.1016/j.jpcs.2013.04.011.

M.R. Patil, M. K. Rendale, S. N. Mathad and R. B. Pujar, Electrical and magnetic properties of Cd+2 doped Ni-Zn ferrites, J. Inorganic and Nano-Metal Chemistry, 47(8), 1145 (2017);https://doi.org/10.1080/24701556.2017.1284097.

A.A. Kadam, S.S.Shinde, S.P.Yadav, P.S.Patil, K.Y.Rajpure, Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite, J. Magn. Magn. Mater.,329, 59 (2013); https://doi.org/10.1016/j.jmmm.2012.10.008.

M.Rahimi, M. Eshraghi, P. Kameli, Structural and magnetic characterizations of Cd substituted nickel ferrite nanoparticles, Ceram. Inter.4 (10),15569 (2014); https://doi.org/10.1016/j.ceramint.2014.07.033.

A.N. Alquarni, M.A. Almessiere, S. Guner, M. Sertkol, S.E. Shirsath, N. Tashkandi, A.Baykal, Structural and magnetic properties of hydrothermally synthesized Bi-substituted Ni–Co nanosized spinel ferrites,Ceram. Inter. 48, 5450 (2022); https://doi.org/10.1016/j.ceramint.2021.11.089.

P.A.Rao, V.Raghavendra, B.Suryanarayana, T.Paulos, N.Murali, P.V.S.K.Phanidhar Varma, R.Giri Prasad, Y.Ramakrishna, K.Chandramouli, Cadmium substitution effect on structural, electrical and magnetic properties of Ni-Zn nano ferrites, Results Phys. 19, 103487 (2020); https://doi.org/10.1016/j.rinp.2020.103487.

S. N. Mathad, R. N. Jadhav and Vijaya Puri, Raman studies of Rod-like Bismuth strontium manganites, Euro. J. Appl. Eng. Sci. Res., 1(3),67 (2012).

Dong-Hwang Chen, Xin-Rong He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Mater. Res. Bul., 36(7-8), 1369 (2001); https://doi.org/10.1016/S0025-5408(01)00620-1.

S. S. Bellad,S. C. Watawe, A. M. Shaikh&B. K. Chougule, Cadmium substituted high permeability lithium ferrite, Bull. Mater. Sci., 23, 83 (2000); https://doi.org/10.1007/BF02706546.

C.Tsay, Y.Chiu, C. Lei,Hydrothermally Synthesized Mg-Based Spinel Nanoferrites: Phase Formation and Study on Magnetic Features and Microwave Characteristics, Materials 11, 2274 (2018); https://doi.org/10.3390/ma11112274.

S.A. Mhamad, A.A.Ali, S.S.Mohtar, F.Aziz, M.Aziz, J.Jaafar, N.Yusof, W.Salleh, A.Ismail, S.Chandren,Synthesis of bismuth ferrite by sol-gel auto combustion method: Impact of citric acid concentration on its physicochemical properties, Mater. Chem. Phys., 282, 125983 (2022); https://doi.org/10.1016/j.matchemphys.2022.125983

L. Agusu, M. Firihu, S.Mitsudo, H.Kikuchi, Crystal and microstructure of MnFe2O4 synthesized by ceramic method using manganese ore and iron sand as raw materials, J. Phys.: Conf. Ser., 1153(1), 012056 (2019); https://doi.org/10.1088/1742-6596/1153/1/012056.

B.B. Patil, A.D. Pawar, D.B. Bhosale, J.S. Ghodake, J.B. Thorat, TJ Shinde, Effect of La3+ substitution on structural and magnetic parameters of Ni–Cu–Zn nano-ferrites, J. nanostructure chem., 9(2), 119 (2019); https://doi.org/10.1007/s40097-019-0302-0.

R.Turtelli, M.Atif, N.Mehmood, F.Kubel, K.Biernacka, W.Linert, R.Grossinger, Cz.Kapusta, M.Sikora, Interplay between the cation distribution and production methods in cobalt ferrite, Mater. Chem.Phys., 132, 832 (2012); https://doi.org/10.1016/j.matchemphys.2011.12.020.

R.M. Shedam, A.B. Gadkari, S.N. Mathad, M. R. Shedam, Structural and mechanical properties of nanograined magnesium ferrite produced by oxalate coprecipitation method, Int. J. Self-Propagating High-Temp. Synth., 26(1), 75 (2017); https://doi.org/10.3103/S1061386217010113.

S. Irfan, M. Nabi, Y. Jamil, N.Amin, Synthesis of Mn1-xZnxFe2O4 ferrite powder by co-precipitation method, Mater. Sci. Eng., 60, 012048 (2014); https://doi.org/10.1088/1757-899X/60/1/012048.

S.M. Patange, S.E. Shirsath,B.G. Toksha,S.S. Jadhav, K.M. Jadhav, Electrical and magnetic properties of Cr3+substituted nanocrystalline nickel ferrite, J. Appl. Phys., 106(2), 023914 (2009); https://doi.org/10.1063/1.3176504.

A.B. Kulkarni, S. N. Mathad, Effect of cadmium doping on structural and magnetic studies of Co-Ni ferrites, Sci. Sinter., 53 (3), 407 (2021); https://doi.org/10.2298/SOS2103407K.

H.R.Shashidhargouda, S.N.Mathad, Synthesis and structural analysis of Ni₀.₄₅Cu₀.₅₅Mn₂O₄ by Williamson–Hall and size–strain plot methods, Ovidius Univ. Ann. Chem., 29(2), 122 (2018); https://doi.org/10.2478/auoc-2018-0018.

J.Massoudi, M.Smari, K. Nouri, E.Dhahri, K.Khirouni, S. Bertaina, L.Bessais, El.Hlil, Magnetic and spectroscopic properties of Ni–Zn– Al ferrite spinel: from the nanoscale to microscale, RSC Adv. 10, 34556 (2020); https://doi.org/10.1039/D0RA05522K.

S.A.Patil, S.M.Otari, V.C.Mahajan, M.G.Patil, A.B.Patil, M.K.Soudagar, B.L.Patil, S.R.Sawant, Structural, IR and magnetisation studies on La3+ substituted copper ferrite, Solid State Commun., 78 (1), 39(1991); https://doi.org/10.1016/0038-1098(91)90805-6.

R.D. Waldron, Infrared Spectra of Ferrites, Physical Review, 99, 1727 (1955); https://doi.org/10.1103/PhysRev.99.1727.

M.R. Patil, M.K. Rendale, S.N. Mathad, R.B. Pujar, Structural and IR study of Ni0.5–x Cd x Zn0.5Fe2O4, Int., J. Self-Propag. High Temp. Synth., 24, 241 (2015); https://doi.org/10.3103/S1061386215040081.

R.Vishwarup, S.N.Mathad, Elastic properties of nano Mg1-xCoxFe2O4 (x= 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4) synthesized by co-precipitation method, J. Mater. Sci. Energy Technol., 3, 559 (2020); https://doi.org/10.1016/j.mset.2020.05.006.

G.M. Shweta, L. R. Naik, R.B. Pujar, S.N. Mathad, Influence of Magnesium doping on structural and elastic parameters of Nickel Zinc nanoferrites, Materials Chemistry and Physics, 257(1), 123825 (2021); https://doi.org/10.1016/j.matchemphys.2020.123825.

G.M. Shweta, L.R. Naik, R.B. Pujar, S.N.Mathad, Cobalt-Doped Nickel Zinc Nanoferrites by Solution-Combustion Synthesis: Structural and Elastic Parameters, Int. J Self-Propag. High-Temp. Synth. 29, 157 (2020); https://doi.org/10.3103/S1061386220030115.

D. Bouokkeze, J. Massoudi, W. Hzez, M. Smari, A. Bougoffa, K. Khirouni, E. Dhahri, L. Bessais,Investigation of the structural, optical, elastic and electrical properties of spinel LiZn2Fe3O8 nanoparticles annealed at two distinct temperatures, RSC Adv., 9. 40940 (2019); https://doi.org/10.1039/C9RA07569K.

Downloads

Published

2023-11-18

How to Cite

Kashid, P. ., Mathad, S., & Shedam, M. R. . (2023). Impact of Cd+2 substitutions on structural and mechanical properties of Co0.6Ni0.4-xCdxFe2O4 (0.00≤ x≤0.40) system. Physics and Chemistry of Solid State, 24(4), 595–602. https://doi.org/10.15330/pcss.24.4.595-602

Issue

Section

Scientific articles (Physics)