Influence of temperature regimes of synthesis on the structure of glassy GeS2
DOI:
https://doi.org/10.15330/pcss.24.4.623-627Keywords:
germanium disulfide, linear expansion, Raman scattering, structural unitsAbstract
The effect of synthesis temperature regimes on the structure and some physical properties of glassy germanium disulfide was examined using the methods of dilatometry and Raman scattering of light. It is concluded that the bond angle disorder increases and the formation of stronger Ge–S bonds in the tetrahedral structure depends on the increase in the synthesis temperature of glassy GeS2. Significant changes in the structural grid of glass also occur when the thermal history of the sample varies in the temperature interval of vitrification.
References
D.I. Bletskan, Crystalline and glassy chalcogenides Si, Ge, Sn and alloys based on them (Transcarpathia, Uzhgorod, 2004).
D.I. Bletskan, K.E. Glukhov, V.M. Kabatsii, V.V. Vakulchak, Electronic structure of the low- and high-temperature phases of germanium disulfide, Uzhhorod University Scientific Herald. Series Physics, 30, 113 (2011).
W.N. Zachariasen, Theory of the structure of glasses, J. Amer. Chem. Soc., 54, 3841 (1932).
L. Chervinka, Medium-range ordering in non-crystalline solids, Journal of Non-Crystalline Solids, 90, 371 (1987); https://doi.org/10.1016/S0022-3093(87)80446-5Get rights and content.
V.V.Tsyhyka, I.J. Rosola, I.I. Turianitsa, M.V. Tsyhyka, Int. Meeting “Clusters and nanostructured materials” (CNM) (Vodograj Ukraine, Uzhgorod, 2018, р. 286.
V.V.Tsyhyka, IV scientific conference "Instrument engineering - 2005: status and prospects", (Kyiv, 2005) р. 198.
I.J. Rosola, V.V.Tsyhyka. The influence of obtaining conditions on linear expansion and structure of vitreous As2S5, Uzhhorod University Scientific Herald. Series Physics, 28, 57 (2010).
V.V.Tsyhyka, I.I. Turianitsa., Thermal expansion and structural relaxation of inorganic glasses, Ukrainian Physical Journal, 42(11-12), 1377 (1997).
P.M. Bridenbaugh, G.P. Espinosa, J.E Griffiths et all, Microscopy origin of the companion A1 Raman line in glassy Ge (S, Se)2, Phys. Rev. B., 20(8), 4140 (1979); https://doi.org/10.1103/PhysRevB.20.4140.
P. Boolchang, J. Grothaus, W.J Bresser, S. Suranyi. Structural origin of broken chemical order in a GeSe2, Phys. Rev. B: Condens. Mater., 25(4), 2975 (1982); https://doi.org/10.1103/PhysRevB.25.2975.
R.J. Nemanich, Low-frequency inelastic light scattering from chalcogenide glasses and alloys, Phys. Rev. B., 16(4), 1655 (1977); https://doi.org/10.1103/PhysRevB.16.1655.
J.E. Griffiths, G.P. Espinosa, J.P. Remeika, Phillyps C., Reversible quasi crystallization in GeSe2, Phys. Rev. B., 25(2) 1272 (1982); https://doi.org/10.1103/PhysRevB.25.1272.
K. Murasec, T. Fukunaga, Y. Tanaka et all. Investigation of lange molecular fragments in glassy Ge1-X (Se or S) X,. Physica B., 117, 962 (1983).
Y. Utsugi, Y.Mizushima, Photostructural change in the Urbach tail in chalcogenide glasses, J. Appl. Phys., 51(3) 1773 (1979); https://doi.org/10.1063/1.327738.
V.W. Feltz, W. Burckhardt, L. Senf, B. Voigt, K Zickmuller. Zur Structur der GeS/GeS2 – und GeSe/GeSe2 Glaser, Z. anorg. Allg. Chem., 435, 172 (1977); https://doi.org/10.1002/zaac.19774350123.
P. Boolchand, J. Grathaus, M. Tenhaver, M. Halze, R.K. Grasseli, Structure of GeS2 glass: spectroscopic evidence for broken chemical order, Phys. Rev. B, 33(8) 5421 (1986); https://doi.org/10.1103/PhysRevB.33.5421.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 I.J. Rosola, V.V. Tsyhyka, M.V. Tsyhyka
This work is licensed under a Creative Commons Attribution 3.0 Unported License.