Thermoluminescence properties of nano-alumina with two different particle sizes

Authors

  • S. Mammadov Institute of Radiation Problems, Azerbaijan National Academy of Science, Baku, Azerbaijan
  • M. Gurbanov Institute of Radiation Problems, Ministry of Science and Education; Baku, Azerbaijan
  • L. Ahmadzade Institute of Radiation Problems, Ministry of Science and Education; Baku, Azerbaijan
  • A. Abishov Institute of Radiation Problems, Ministry of Science and Education; Baku, Azerbaijan

DOI:

https://doi.org/10.15330/pcss.24.3.584-588

Keywords:

Activation energy, Frequency factor, GlowFit, Nano α-alumina, Thermoluminescence

Abstract

This research aims to examine the thermoluminescence (TL) properties of nano-sized alumina, including the relationship between TL intensity and absorbed dose, the identification of individual luminescence peaks, and determining trap parameters for use as a possible dosimeter. The samples were exposed to 530 to 2646 Gy doses from 60Co irradiation. The results show that micro-sized α-Al2O3 had a main dosimetry peak at Tm = 435 K, while nano-α-Al2O3 samples with particle sizes of 40 and 50 nm displayed a TL luminescence glow curve, with the primary dosimetry peak located in the low-temperature range and a complex structure at higher temperatures (above 500 K). The primary dosimetry peak was influenced by nanoparticle size, with a maximum of 460 K for the 40 nm sample and 467 K for the 50 nm sample. The main dosimetry peak was described by the superposition of two peaks

 

References

M. A. Jowhari, S. A. Farha Al-Said, A. Abuhoza, and H. Donya, Dosimetric studies of pure and Ag-doped alumina as nanodosimeter for high gamma radiation doses, Mater. Today Proc., 65, 2615 (2022); https://doi.org/10.1016/J.MATPR.2022.04.879.

N. S. B. Saharin, N. E. Ahmad, H. A. Tajuddin, and A. R. Tamuri, Thermoluminescence properties of aluminium oxide doped strontium, lithium and germanium prepared by combustion synthesis method, EPJ Web Conf., 156, (2017); https://doi.org/10.1051/epjconf/201715600001.

E. G. Yukihara et al., The effects of deep trap population on the thermoluminescence of Al2O3:C, Radiat. Meas., 37(6), 627 (2003); https://doi.org/10.1016/S1350-4487(03)00077-5.

M. Osvay and T. Biró, Aluminium oxide in TL dosimetry, Nucl. Instruments Methods, 175(1), 60 (1980); https://doi.org/10.1016/0029-554X(80)90253-0.

V. S. Kortov, A. Orozbek Uulu, and I. A. Vainshtein, Characteristic features of thermoluminescence kinetics in dosimetric aluminum oxide crystals, J. Appl. Spectrosc., 73(2), 206 (2006), https://doi.org/10.1007/s10812-006-0059-3.

N. S. Saharin, H. Wagiran, and A. R. Tamuri, Thermoluminescence Characteristics of Aluminium Oxide Doped Carbon Exposed to Cobalt-60 Gamma Radiation, Adv. Mater. Res., 1107, 553 (2015); https://doi.org/10.4028/www.scientific.net/AMR.1107.553.

A. J. J. Bos, High sensitivity thermoluminescence dosimetry, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 184(1–2), 3 (2001); https://doi.org/10.1016/S0168-583X(01)00717-0.

M. Puchalska and P. Bilski, GlowFit-a new tool for thermoluminescence glow-curve deconvolution, Radiat. Meas., 41(6), 659 (2006); https://doi.org/ 10.1016/j.radmeas.2006.03.008.

A. Delgado and J. M. Gómez Ros, Computerised glow curve analysis: A tool for routine thermoluminescence dosimetry, Radiat. Prot. Dosimetry, 96(1–3), 127 (2001), https://doi.org/10.1093/oxfordjournals.rpd.a006568.

V. Correcher, J. Garcia-Guinea, R. Gonzalez-Martin, E. Crespo-Feo, and D. Jimenez-Cordero, Study of aluminium oxide from high-alumina refractory ceramics by thermoluminescence, Bull. Mater. Sci., 31( 6), 891 (2008); https://doi.org/10.1007/s12034-008-0142-x.

J. Garcia-Guinea, V. Correcher, J. Rubio, and F. J. Valle-Fuentes, Effects of preheating on diaspore: Modifications in colour centres, structure and light emission, J. Phys. Chem. Solids, 66(7), 1220 (2005), https://doi.org/10.1016/j.jpcs.2005.04.001.

V. Correcher, J. Garcia-Guinea, and F. J. Valle-Fuentes, Recent results on the thermoluminescence properties of diaspore, Geophys. Res. Lett., 30(18), 5 (2003); https://doi.org/10.1029/2003GL018028.

M. G. Rodriguez, G. Denis, M. S. Akselrod, T. H. Underwood, and E. G. Yukihara, Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al2O3:C,Mg, Radiat. Meas., 46(12), 1469 (2011); https://doi.org/10.1016/j.radmeas.2011.04.026.

D. R. Mishra et al., Luminescence properties of α - Al2O3:C crystal with intense low temperature TL peak, Radiat. Meas., 42(2), 170 (2007); https://doi.org/10.1016/j.radmeas.2006.06.007.

A. El-Taher, H. T. Mahdy, and J. H. AlZahrani, Determination of Thermoluminescence Kinetic Parameters of Bauxite by Computer Glow Curve Deconvolution Method (CGCD), Life Sci. Journal, 10(2), 1475 (2013).

J. Garcia-Guinea, J. Rubio, V. Correcher, and F. J. Valle-Fuentes, Luminescence of α-Al2O3 and α-AlOOH natural mixtures, Radiat. Meas., 33 (5), 653 (200); https://doi.org/10.1016/S1350-4487(01)00078-6.

N. Salah, Z. H. Khan, and S. S. Habib, Nanoparticles of Al2O3:Cr as a sensitive thermoluminescent material for high exposures of gamma rays irradiations, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 269(4), 401 (2011); https://doi.org/10.1016/j.nimb.2010.12.054.

G. Molnár et al., Thermally Stimulated Luminescence and Exoelectron Emission Mechanism of the 430 K (D’) Dosimetric Peak of a-Al2O3, Radiat. Prot. Dosimetry, 84(1–4), 253 (1999); https://doi.org/10.1093/oxfordjournals.rpd.a032731.

M. Zahedifar, L. Eshraghi, and E. Sadeghi, Thermoluminescence kinetics analysis of α-Al2O3:C at different dose levels and populations of trapping states and a model for its dose response, Radiat. Meas., 47(10), 957 (2012); https://doi.org/10.1016/j.radmeas.2012.07.018.

N. Salah, P. D. Sahare, S. P. Lochab, and P. Kumar, TL and PL studies on : Dy nanoparticles, Radiat. Meas., 41(1), 40 (2006); https://doi.org/10.1016/j.radmeas.2005.07.026.

A. I. Surdo, R. M. Abashev, I. I. Milman, and E. V. Moiseykin, Accumulation features and TL of TLD-500 detectors in a wide temperature range at pulsed and continuous high-dose irradiation, Radiat. Meas., 90, 192 (2016); https://doi.org/10.1016/j.radmeas.2015.12.027.

R. Chen, V. Pagonis, and J. L. Lawless, Evaluated thermoluminescence trapping parameters–What do they really mean?, Radiat. Meas., 91, 21 (2016); https://doi.org/10.1016/j.radmeas.2016.04.006.

G. Molnár et al., Thermally Stimulated Luminescence and Exoelectron Emission Mechanism of the 430 K (D’) Dosimetric Peak of a-Al2O3, Radiat. Prot. Dosimetry, 84(1–4), 253 (1999); https://doi.org/10.1093/oxfordjournals.rpd.a032731.

E. G. Yukihara, V. H. Whitley, S. W. S. McKeever, A. E. Akselrod, and M. S. Akselrod, Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C, Radiat. Meas., 38(3), 317 (2004); vhttps://doi.org/10.1016/j.radmeas.2004.01.033.

Downloads

Published

2023-10-01

How to Cite

Mammadov, S., Gurbanov, M., Ahmadzade, L., & Abishov, A. (2023). Thermoluminescence properties of nano-alumina with two different particle sizes. Physics and Chemistry of Solid State, 24(3), 584–588. https://doi.org/10.15330/pcss.24.3.584-588

Issue

Section

Scientific articles (Physics)