Geometric phase for investigation of nanostructures in approaches of polarization-sensitive optical coherence tomography
DOI:
https://doi.org/10.15330/pcss.24.4.729-734Keywords:
polarization-sensitive optical coherence tomography, geometric phase, dynamic phase, thin layers of anisotropic micro (nano) objects, Mach-Zehnder interferometerAbstract
Proposed paper presents the latest results in the framework of polarization-sensitive low-coherence interferometry related to new approaches for using the geometric phase to reproduce the polarization structure of a biological transparent anisotropic micro (nano) object. The polarization parameters of an anisotropic object are measured in real time on the basis of a modified Mach-Zehnder interferometer. The advantage of using the geometric phase is the diagnostic of polarization anisotropic surface (subsurface) nanosized layers in a non-contact, non-invasive manner.
References
A.Z. de Freitas, M.M. Amaral and M.P. Raele, Optical Coherence Tomography: Development and Applications. In: F. J. Duarte (ed.), Laser Pulse Phenomena and Applications (InTech, London, 2010); http://dx.doi.org/10.5772/12899.
S. Aumann, S. Donner, J. Fischer, and F. Mǘller, Optical Coherence Tomography (OCT): Principle and Technical Realization. In: J. F. Bille (ed.), High Resolution Imaging in Microscopy and Ophthalmology (Springer, Cham, 2019); https://doi.org/10.1007/978-3-030-16638-0_3.
M. Everett, S. Magazzeni, T. Schmoll, M. Kempe, Optical coherence tomography: From technology to applications in ophthalmology, Translational Biophotonics, 3(1), e202000012 (2021); https://doi.org/10.1002/tbio.202000012.
M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, Polarization sensitive optical coherence tomography in the human eye, Progress in Retinal and Eye Research, 30(6), 431 (2011); https://doi.org/10.1016/j.preteyeres.2011.06.003.
W. Drexler, Y. Chen, A.D. Aguirre, B. Považay, A. Unterhuber, J.G. Fujimoto, Ultrahigh Resolution Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography (Springer, Cham, 2015); https://doi.org/10.1007/978-3-319-06419-2_10.
B. Baumann, Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications, Appl. Sci., 7, 474 (2017); https://doi.org/10.3390/app7050474.
A.J. Bron, The architecture of the corneal stroma, Br. J. Ophthalmol., 85, 379 (2001); http://dx.doi.org/10.1136/bjo.85.4.379.
D.J. Donohue, B.J. Stoyanov, R.L. McCally, & R.A. Farrell, Numerical modeling of the cornea’s lamellar structure and birefringence properties, Journal of the Optical Society of America A, 12(7), 1425 (1995); https://doi.org/10.1364/josaa.12.001425.
M. Winkler, G. Shoa, Y. Xie, S. J. Petsche, P. M. Pinsky, T. Juhasz, D. J. Brown, & J. V. Jester, Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma, Investigative ophthalmology & visual science, 54(12), 7293 (2013); https://doi.org/10.1167/iovs.13-13150.
V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, (SPIE Press, Bellingham, 2015).
D. A. Atchison, G. Smith, Chromatic dispersions of the ocular media of human eyes, Journal of the Optical Society of America A, 22(1), 29 (2005); https://doi.org/10.1364/josaa.22.000029.
E. Collett, Field Guide to Polarization, (SPIE Press, Bellingham, 2005).
N. Lippok, S. Coen, R. Leonhardt, P. Nielsen, and F. Vanholsbeeck, Instantaneous quadrature components or Jones vector retrieval using the Pancharatnam–Berry phase in frequency domain low-coherence interferometry, Optics Letters, 37(15), 3102 (2012); https://doi.org/10.1364/OL.37.003102.
G. Coppola, M. A. Ferrara, Polarization-Sensitive Digital Holographic Imaging for Characterization of Microscopic Samples: Recent Advances and Perspectives, Appl. Sci., 10, 4520 (2020); https://doi.org/10.3390/app10134520.
M.C. Pierce, M. Shishkov, B.H. Park, N.A. Nassif, B.E. Bouma, G.J. Tearney, J.F. de Boer, Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography, Opt. Express, 13, 5739 (2005); https://doi.org/10.1364/OPEX.13.005739.
J.N. Van der Sijde, A. Karanasos, M. Villiger, B.E. Bouma, E. Regar, First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo, Eur. Heart J., 37, 1932 (2016); https://doi.org/10.1093/eurheartj/ehw179.
O.V. Angelsky, C.Yu. Zenkova, M.P. Gorsky, N.V. Gorodyns’ka, Feasibility of estimating the degree of coherence of waves at the near field, Appl. Opt., 48(15), 2784 (2009); https://doi.org/10.1364/AO.48.002784.
C. Yu. Zenkova, M. P.Gorsky, N. V. Gorodyns’ka, The electromagnetic degree of coherence in the near field, Journal of Optoelectronics and Advanced Materials, 12(1), 74 (2010).
D. Lopez-Mago, A. Canales-Benavides, R. I. Hernandez-Aranda, & J. C. Gutiérrez-Vega, Geometric phase morphology of Jones matrices. Optics Letters, 42(14), 2667 (2017). https://doi.org/10.1364/ol.42.002667.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 C.Yu. Zenkova, O.V. Angelsky, D.I. Ivanskyi, M.M. Chumak
This work is licensed under a Creative Commons Attribution 3.0 Unported License.