Assessing the Effect of Electronic Pseudopotentials and Relativistic Treatments on the Structural and Electrical Properties of GaN: A DFT Study
DOI:
https://doi.org/10.15330/pcss.24.4.714-721Keywords:
DFT, LDA, Pseudopotentials, Relativistic TreatmentsAbstract
Applying the principle of Density functional theory, we can calculate various parameters like lattice constant, band gap, band plot, dielectric function plot, refractive index plot, conductivity plot, density of state plot, loss function etc. of GaN. In this work, we use different electronic pseudopotentials with different relativistic treatment studied using Local density approximation functional (LDA-CAPZ) within DFT for GaN. We used to calculate the energy values, lattice parameters change after geometry optimisation and plot the band energies. Electronic structure calculations results are compares taking different electronic pseudopotentials of different cut-off energy having different relativistic approaches. The Density of state plot and partial density of states plot help to studied more about the electronic as well as magnetic characteristics of the GaN sample. Here, we also compare the advantages and disadvantages of different pseudopotentials with different relativistic approaches of the sample. Energy level distribution and partial density of states were compared for all the pseudopotentials with different relativistic treatments, providing insight into the orbital contributions of electrons to the density of levels. Our study provides a deeper understanding into the impact of electronic pseudopotentials and relativistic treatments on the electronic and structural properties of GaN.
References
K.A. Lopes Lima, L.A. Ribeiro Junior, A dft study on the mechanical, electronic, thermodynamic, and optical properties of gan and aln counterparts of biphenylene network, Materials Today Communications. 37, 107183 (2023); https://doi.org/10.1016/j.mtcomm.2023.107183.
M. Shabani, T. Movlarooy, S, Hessami Pilehrood, DFT study of electronic and structural properties of single‐walled gallium nitride nanotubes, International Journal of Quantum Chemistry, 123(17), e27141 (2023); https://doi.org/10.1002/qua.27141.
N. Wang, G. Tang, A review on environmental efficiency evaluation of new energy vehicles using life cycle analysis, Sustainability; 14(6), 3371(2022); https://doi.org/10.3390/su14063371.
M. Bursch, J.M. Mewes, A. Hansen, S. Grimme, Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry. Angewandte Chemie International Edition, 61(42), e202205735 (2022); https://doi.org/10.26434/chemrxiv-2022-n304h.
B. Bauer, S. Bravyi, M. Motta, G.K. Chan, Quantum algorithms for quantum chemistry and quantum materials science, Chemical Reviews, 120(22); 12685 (2020); https://doi.org/10.1021/acs.chemrev.9b00829.
J. P. Perdew and K. Burke and M. Ernzehof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3685 (1996).
J.P. Perdew and J.A. Chevary and S.H. Vosko and K.A. Jackson and M.R. Pederson and D.J. Singh and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46, 6671 (1992); http://dx.doi.org/10.1103/PhysRevB.46.6671.
Dipan Kumar Das and Padmaja Patnaik, comparison of results of different exchange and correlation potential for GaN, ISSN-2348-2397, Page Nos. 47 (2020);
T.K. Stenczel, Z. El-Machachi, G. Liepuoniute, J.D. Morrow, A.P. Bartók, M.I. Probert, G. Csányi, V.L. Deringer, Machine-learned acceleration for molecular dynamics in CASTEP. The Journal of Chemical Physics, 159(4), 044803 (2023); https://doi.org/ 10.1063/5.0155621.
D.M. Ceperley, B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 45, 566 (1980); https://doi.org/10.1103/PhysRevLett.45.566.
J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23, 5048 (1981); https://doi.org/10.1103/PhysRevB.23.5048.
N. Dahham, A. Fares, K. Najem, Modeling and simulation of mechanical and physical properties of Barium orthotitanate (Ba2TiO4) composite by Materials Studio (MS), Tikrit, J. Pure Science, 22 (11), 61 (2017); https://doi.org/10.25130/tjps.v22i11.915.
M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R. McClean, K. Mitarai, X. Yuan, L. Cincio, P.J. Coles, Variational quantum algorithms. Nature Reviews Physics, 3(9), 625 (2021); https://doi.org/10.1038/s42254-021-00348-9.
J. Schmidt, M.R. Marques, S. Botti, M.A. Marques. Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials. 5(1), 83 (2019); https://doi.org/10.1038/s41524-019-0221-0.
G.P. Srivastava. The physics of phonons. CRC press; 45б (2022); https://doi.org/10.1201/9781003141273.
Lee, M.H. PhD Thesis, Cambridge University (1996.)
A. Mokhtari, A. Ribeiro, Stochastic quasi-newton methods. Proceedings of the IEEE. 108(11), 1906 (2020).
S.A. Rakityansky. Schrödinger Equation and Its Solutions. InJost Functions in Quantum Mechanics: A Unified Approach to Scattering, Bound, and Resonant State Problems, Cham: Springer International Publishing. 25 (2022);
C. Tezcan, and R. Sever, A general approach for the exact solution of the Schrödinger equation. International Journal of Theoretical Physics, 48, 337 (2009); https://doi.org/10.1007/s10773-008-9806-y.
R.A. El-Nabulsi, A new approach to the Schrodinger equation with position-dependent mass and its implications in quantum dots and semiconductors, Journal of Physics and Chemistry of Solids. 140, 109384 (2020); https://doi.org/10.1016/j.jpcs.2020.109384.
A. Urru, Lattice dynamics with Fully Relativistic Pseudopotentials for magnetic systems, with selected applications, 2020.
S.F. Gillani, N. Yasmin, Z. Usman, H.M. Khan, M. Safdar, and M. Mirza, First principles study on optical and thermal properties of BaTiS3. Optik, 261, 169196 (2022); https://doi.org/10.1016/j.ijleo.2022.169196.
M. Bursch, J.M. Mewes, A. Hansen, S. Grimme, Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry. Angewandte Chemie International Edition, 61(42), e202205735 (2022); https://doi.org/10.26434/chemrxiv-2022-n304h.
P. Pyykkö, Relativistic Theory of Atoms and Molecules III: A Bibliography 1993–1999. Springer Science & Business Media; 2013 Jun 29. https://doi.org/10.1007/978-3-642-51885-0.
M. Filatov, and D. Cremer, On the physical meaning of the ZORA Hamiltonian. Molecular Physics, 101(14), 2295 (2003); https://doi.org/10.1080/0026897031000137670.
L.R Maurer, J. Rump, A.C. Filippou. The Electronic Nature of Cationic Group 10 Ylidyne Complexes. Inorganics. 11(3), 129 (2023); https://doi.org/10.3390/inorganics11030129.
A.C. Neto, F.E. Jorge, T. Gomes, ZORA Gaussian basis sets for Fr, Ra, and Ac. Journal of Molecular Modeling. 28(10), 334 (2022); https://doi.org/10.1007/s00894-022-05331-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 D. K. Das, P. Patnaik, S.K. Nayak, M. Barala
This work is licensed under a Creative Commons Attribution 3.0 Unported License.