A study Electronic structure of InSb: Experiment and Theory


  • Sameen F. Mohammed Department of Mechanical Techniques, Technical Institute Kirkuk, Northern Technical University, Iraq
  • Mahmood A. Mohammed Department of Mechanical Techniques, Technical Institute Kirkuk, Northern Technical University, Iraq




Ionic model (IM), Compton profile (Cp), Indium Antimonite (InSb), Electron momentum density (EMD), LCAO method


The current study show the results related to investigating the Compton scattering(Cs) of Indium Antimonite (InSb). 241Am with 59.54 keV Gamm-radiations source Compton  spectrometer is employed for the purpose of experimental measurement. The technique of linear combination of atomic orbitals (LCAO) is utilized within the framework of density functional theory (DFT),is used to assess the theoretical values of distributing the electron momentum density. A comparison was then made between the research findings and empirical data. Additionally, calculations employing the ionic model (IO) based on the 5p state of In and the 5p state of Sb atoms reveal that 0. 5 electrons of the state of 5pIn may have been transferred to the 5p state of Sb atoms in order to estimate the charge transfer in indium antimonite (InSb).


X. Zhang, Y. Hao, G. Meng, L. Zhang, Fabrication of Highly Ordered InSb Nanowire Arrays by Electrodeposition in Porous Anodic Alumina Membranes, Journal of The Electrochemical Society, 152, C664 (2005); http://dx.doi.org/10.1149/1.2007187.

W. Liu, A.Y. Chang, R.D. Schaller, D.V. Talapin, Colloidal InSb Nanocrystals, Journal of the American Chemical Society, 134, 20258 (2012); https://doi.org/10.1021/ja309821j.

M. I. Khan, X. Wang, K. Bozhilov, C.S. Ozkan, Templated Fabrication of InSb Nanowires for Nanoelectronics, Journal of Nanomaterials, 5, 698759 (2008); http://dx.doi.org/10.1155/2008/698759.

K. Rahul, A.K. Verma, R.N. Tripathi, S.R. Vishwakarma, Effect of substrate temperature on the electrical and optical properties of electron beam evaporated indium antimonide thin films, Materials Science-Poland, 30 (4), 375 (2012); https://doi.org/10.2478/s13536-012-0044-x.

F.W. Wise, Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement, Accounts of Chemical Research, 33 (11), 773 (2000); https://doi.org/10.1021/ar970220q.

D.L. Rode, Electron Transport in InSb, InAs, and InP, Physical Review B, 3, 3287 (1971); https//doi.org/10.1103/PhysRevB.3.3287.

S. Yamaguchi, T. Matsumoto, J. Yamazaki, N. Kaiwa, A. Yamamoto, Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal, Applied Physics Letters, 87 (20) 201902 (2005); http://dx.doi.org/10.1063/1.2130390.

A.L. Miranda, B.Xu, O. Hellman, A.H. Romero, M.J. Verstraete, Ab initio calculation of the thermal conductivity of indium antimonide, Semiconductor Science and Technology M, 29 (12), 124002 (2014); https:///doi:10.1088/0268-1242/29/12/124002.

R. Ahmed, Fazal-E-Aleem, S.J. Hashemifar, H. Rashid, H. Akbarzadeh, Physical Properties of III-Antiminodes – a First Principles Study, Communications in Theoretical Physics, 52 (3), 527(2009); https://doi.org/10.1088/0253-6102/52/3/28.

S. Massidda, A. Continenza, A.J. Freeman, T.M. de Pascale, F. Meloni, M. Serra, Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb, Physical Review B, 41 12079 (1990); https://doi.org/10.1103/physrevb.41.12079.

C.R. Bolognesi, D.H. Chow, Electron Device Letters, IEEE, InAs/AlSb dual-gate HFETs, 17 (11) 534 (1996); https://doi.org/10.1109/55.541772.

P.E. Thompson, J.L. Davis, M.J. Yang, D.S. Simons, P.H. Chi, Controlled p‐ and n‐type doping of homo‐ and heteroepitaxially grown InSb, Journal of Applied Physics 74 (11), 6686 (1993); https://doi.org/10.1063/1.355111.

Y-S. Kim, M. Marsman, G. Kresse, F. Tran, P. Blaha, Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors, Physical Review B, 82, 205212 (2010); http://dx.doi.org/10.1103/PhysRevB.82.205212.

M. Razeghi, High-power laser diodes based on InGaAsP alloys,Nature 369 (6482), 631-633 (1994); https://doi.org/10.1038/369631a0.

T. He, J. Chen, H.D. Rosenfeld, M.A. Subramanian, Thermoelectric Properties of Indium-Filled Skutterudites, Chemistry of Materials, 18 (3); 759 (2006); https://doi.org/10.1021/cm052055b.

W.K. Liebmann, E.A. Miller, Preparation, Preparation, Phase‐Boundary Energies, and Thermoelectric Properties of InSb‐Sb Eutectic Alloys with Ordered Microstructures, Journal of Applied Physics, 34 (9), 2653 (1963); https:// doi:10.1063/1.1729786.

M. Alouani, L. Brey, N.E. Christensen, Calculated optical properties of semiconductors, Physical Review B , 37 1167-1179(1988); https://doi.org/10.1103/physrevb.37.1167.

A. De, C.E. Pryor, Predicted band structures of III-V semiconductors in the wurtzite phase, Physical Review B, 81 (2010); https://doi.org/10.1103/PhysRevB.81.155210.

P.K. Joshi, D. Mali, K. Kumar, N.L. Heda, B.L. Ahuja, High energy Compton scattering, electronic structure and optical response of zirconium substituted lead titanate, Radiation Physics and Chemistry, 1991 10294 (2022); https://doi.org/10.1016/j.radphyschem.2022.110294.

F. Biggs, L.B. Mendelsohn, J.B. Mann, Hartree-Fock Compton profiles for the elements, Atomic Data and Nuclear Data Tables, 16 (3), 201 (1975); https://doi.org/10.1016/0092-640X(75)90030-3.

A.Yu. Kuznetsov, A.B. Sobolev, A.S. Makarov and A.N. Velichko, First-principles calculations of the electronic structure and plastic properties of CsCl, CsBr, and CsI crystals, Physics of the Solid State, 47, 2030 (2005); https:// doi.org/10.1134/1.2131140.

R. Dovesi, V.R. Saunders, C. Roetti, et al., CRYSTAL06 User’s Manual, University of Torino, Torino, 2006.

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098.

S.F. Mohammed, F.M Mohammad, J. Sahariya, H.S. Mund, K.C. Bhamu, B.L. Ahuja, Electronic structure of CaCO3: A Compton scattering study, Applied Radiation and Isotopes, 72, 64 (2013); https://doi.org/10.1016/j.apradiso.2012.10.006.

John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 78, 1396 (1997); https://doi.org/10.1103/PhysRevLett.77.3865.

B.L. Ahuja, F.M. Mohammad, S.F. Mohammed, H.S. Mund, N.L. Heda, Compton scattering and charge transfer in Er substituted DyAl, Journal of Physics and Chemistry of Solids, 7750 (2015); https://doi.org/10.1016/j.jpcs.2014.09.010.


B.K. Sharma, A. Gupta, H. Singh, S. Perkkiِ, A. Kshirsagar, D.G. Kanhare, Compton profile of palladium, Physical Review B, 37, 6821 (1988); https://doi.org/10.1103/PhysRevB.37.6821.

B. Williams, Compton Scattering, McGraw-Hill, London, 1977.

F. Biggs, L.B. Mendelsohn, J.B. Mann, Hartree-Fock Compton profiles for the elements, 16201 (1975); https://doi.org/10.1016/0092-640X(75)90030-3.

B.L. Ahuja , M. Sharma, Performance of 20 Ci137Cs γ-ray Compton spectrometer for the study of momentum densities, Pramana Journal of Physics, 65137 (2005); http://dx.doi.org/10.1007/BF02704383.




How to Cite

Mohammed, S. F., & Mohammed, M. A. (2024). A study Electronic structure of InSb: Experiment and Theory. Physics and Chemistry of Solid State, 25(1), 73–78. https://doi.org/10.15330/pcss.25.1.73-78



Scientific articles (Physics)