Selective laser sintering of amorphous nanoparticles: Molecular dynamics simulations
DOI:
https://doi.org/10.15330/pcss.25.1.5-13Keywords:
Selective laser melting, nanoparticles, liquid phase sintering, molecular dynamics method, pair correlation functions, coordination number distribution functionsAbstract
The paper investigates the process of liquid-phase sintering of amorphous iron-based nanoparticles by the method of molecular dynamics simulations. The classical molecular dynamics package LAMMPS was used for modeling. Visual analysis of the atomic configurations of nanoparticles during their rapid cooling revealed the self-purification effect of the particles. Partial pair correlation functions and coordination number distribution functions were used to analyze the atomic structure of nanoparticles after sintering. As a result of the analysis of the main structural parameters, which were obtained using the specified functions, differences in the atomic composition and structure of the volume and surface of nanoparticles were established.
References
V. Anthony, Teran and Andreas Bill, Time-evolution of grain size distributions in random nucleation and growthcrystallization processes, Phys. Rev. B, 81(7), 075319 (2010); https://doi.org/10.1103/PhysRevB.81.075319.
M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, J.M. Prado, Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels, Acta Materialia, 53(17), 4605 (2005); https://doi.org/10.1016/j.actamat.2005.06.020.
J. Pelleg, Grain Size Effect on Mechanical Properties. In: Mechanical Properties of Silicon Based Compounds: Silicides (Engineering Materials, Springer, Cham, 2019); https://doi.org/10.1007/978-3-030-22598-8_13.
R.B. Figueiredo, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in metals. J Mater Sci, 57, 5210 (2022); https://doi.org/10.1007/s10853-022-06919-0.
M. Naghizadeh, H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work-Hardening Behavior of AISI 304 Austenitic Stainless Steel, Steel research international, 90(10), 1900153 (2019); https://doi.org/10.1002/srin.201900153.
J. M. Maita, S. Rommel, J. R. Davis, H. Ryou, J. A. Wollmershauser, E. P. Gorzkowski, B. N. Feigelson, M. Aindow, S. Lee, Grain size effect on the mechanical properties of nanocrystalline magnesium aluminate spinel, Acta Materialia, 251, 118881 (2023); https://doi.org/10.1016/j.actamat.2023.118881.
Y. Qin, P. Wen, D. Xia, H. Guo, M. Voshage, L. Jauer, Y. Zheng, J. H. Schleifenbaum, Y. Tian, Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn, Additive Manufacturing, 33, 101134 (2020); https://doi.org/10.1016/j.addma.2020.101134.
K. Zhou, B. Liu, Y. Yao, K. Zhong, Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics, Materials Science and Engineering: A, 615, 92 (2014); https://doi.org/10.1016/j.msea.2014.07.066.
L.-C. Zhang, Z. Jia, F. Lyu, S.-X. Liang, A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects, Prog. Mater. Sci., 105, 100576 (2019); https://doi.org/10.1016/j.pmatsci.2019.100576.
M. Jakab, J. Scully, On-demand release of corrosion-inhibiting ions from amorphous Al–Co–Ce alloys, Nature Mater, 4, 667 (2005); https://doi.org/10.1038/nmat1451.
Y.C. Li, C. Zhang, W. Xing, S.F. Guo, L. Liu, ACS Design of Fe-Based Bulk Metallic Glasses with Improved Wear Resistance, Appl. Mater. Interfaces, 10, 43144 (2018); https://doi.org/10.1021/acsami.8b11561.
A. L. Greer, Physical Metallurgy (Fifth Edition), Capter 4 - Metallic Glasses, (Elsevier, Amsterdam, 2014); https://doi.org/10.1016/B978-0-444-53770-6.00004-6.
K. Russew, L. Stojanova, Most Important Methods for Production of Amorphous Metallic Alloys. In: Glassy Metals (Springer, Berlin, Heidelberg, 2016); https://doi.org/10.1007/978-3-662-47882-0_2.
Si. Yamaura, W, Zhang, A, Inoue, Introduction to Amorphous Alloys and Metallic Glasses. Novel Structured Metallic and Inorganic Materials (Springer, Singapore, 2019); https://doi.org/10.1007/978-981-13-7611-5_1.
Y. Yokoyama, E. Mund, A. Inoue, L. Schultz, Production of Zr55Cu30Ni5Al10 Glassy Alloy Rod of 30 mm in Diameter by a Cap-Cast Technique, Mater. Trans., 48, 3190 (2007); https://doi.org/10.2320/matertrans.MRP2007164.
W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci. 52, 540 (2007); https://doi.org/10.1016/j.pmatsci.2006.07.003.
N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, A. Inoue, The world's biggest glassy alloy ever made, Intermetallics, 30, 19 (2012); https://doi.org/10.1016/j.intermet.2012.03.020.
J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater. 22, 1566 (2010); https://doi.org/10.1002/adma.200902776.
O. Diegel, Comprehensive Materials Processing, 10.02 - Additive Manufacturing: An Overview, (Elsevier, Amsterdam, 2014); https://doi.org/10.1016/B978-0-08-096532-1.01000-1.
E. Tempelman, H. Shercliff and B. Ninaber van Eyben, Manufacturing and Design Understanding the principles of how things are made (Elsevier, Amsterdam, 2014); https://doi.org/10.1016/C2011-0-08438-7.
D. Godec, J. Gonzalez-Gutierrez, A. Nordin, E. Pei, J. Ureña Alcázar, A Guide to Additive Manufacturing (Springer, Cham, 2022); https://doi.org/10.1007/978-3-031-05863-9.
Y. Shen, Y. Li, C. Chen, H. -L. Tsai, 3D printing of large, complex metallic glass structures, Materials & Design, 117, 213 (2017); https://doi.org/10.1016/j.matdes.2016.12.087.
C. Zhang, D. Ouyang, S. Pauly, L. Liu, 3D printing of bulk metallic glasses, Materials Science and Engineering: R: Reports, 145, 100625 (2021); https://doi.org/10.1016/j.mser.2021.100625.
Z. J. Liu, Q. Cheng, Y. Wang, Y. Li, J. Zhang, Sintering neck growth mechanism of Fe nanoparticles: A molecular dynamics simulation, Chemical Engineering Science, 218, 115583 (2020); https://doi.org/10.1016/j.ces.2020.115583.
J. Guo, P. Ji, L. Jiang, G. Lin Y. Meng, Femtosecond laser sintering Al nanoparticles: A multiscale investigation of combined molecular dynamics simulation and two-temperature model, Powder Technology, 407, 117682 (2022); https://doi.org/10.1016/j.powtec.2022.117682.
S. Kurian, R. Mirzaeifar, Selective laser melting of aluminum nano-powder particles, a molecular dynamics study, Additive Manufacturing, 35, 101272 (2020); https://doi.org/10.1016/j.addma.2020.101272.
K. Peng, H. Huang, H. Xu, Y. Kong, L. Zhu, Z. Liu, A molecular dynamics study of laser melting of densely packed stainless steel powders, International Journal of Mechanical Sciences, 243, 108034 (2023); https://doi.org/10.1016/j.ijmecsci.2022.108034.
A. Abedini, A. Montazeri, A. Malti, A. Kardani, Mechanical properties are affected by coalescence mechanisms during sintering of metal powders: Case study of Al-Cu nanoparticles by molecular dynamics simulation, Powder Technology, 405, 117567 (2022); https://doi.org/10.1016/j.powtec.2022.117567.
J. Nandy, N. Yedla, P. Gupta, H. Sarangi, S. Sahoo, Sintering of AlSi10Mg particles in direct metal laser sintering process: A molecular dynamics simulation study, Materials Chemistry and Physics, 236, 121803 (2019); https://doi.org/10.1016/j.matchemphys.2019.121803.
Web source: https://www.lammps.org.
Web source: https://www.ovito.org/.
M. I. Baskes, J. S. Nelson, and A. F. Wright, Semiempirical modified embedded-atom potentials for silicon and germanium, Phys. Rev. B, 40(9), 6085 (1989); https://doi.org/10.1103/PhysRevB.40.6085.
B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A. Moitra, and M. I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B, 85(24), 245102 (2012); https://doi.org/10.1103/PhysRevB.85.245102.
A. Malti, A. Kardani, A. Montazeri, An insight into the temperature-dependent sintering mechanisms of metal nanoparticles through MD-based microstructural analysis, Powder Technol., 386, 30 (2021); https://doi.org/10.1016/j. powtec.2021.03.037.
W.D. Kingery, M. Berg, Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion, J. Appl. Phys., 26 (10), 1205 (1955); https://doi.org/10.1063/1.1721874.
J. P. Hansen, I. R. McDonald, Theory of Simple Liquids (Fourth Edition) (Elseiver, Amsterdam, 2013); https://doi.org/10.1016/C2010-0-66723-X.
J.C. Slater, Atomic Radii in Crystals, The Journal of Chemical Physics., 41(10), 3199 (1964); https://doi.org/10.1063/1.1725697.
E. Clementi, D.L.Raimondi, W.P. Reinhardt, Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, The Journal of Chemical Physics., 47(4), 1300 (1967); https://doi.org/10.1063/1.1712084.
Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill International Book Company, New York, 1980);
B. E. Douglas, S. -M. Ho, Structure and Chemistry of Crystalline Solids (Springer, New York, 2006); https://doi.org/10.1007/0-387-36687-3.
A. L. Efros and M. Rosen, The Electronic Structure of Semiconductor Nanocrystals, Annu. Rev. Mater. Sci., 30, 475 (2000); https://doi.org/10.1146/annurev.matsci.30.1.475.
S.C. Erwin, L. Zu, M.I. Haftel, et al., Doping semiconductor nanocrystals, Nature, 436, 91 (2005); https://doi.org/10.1038/nature03832.
G. M. Dalpian and J.R. Chelikowsky, Self-Purification in Semiconductor Nanocrystals, Phys. Rev. Lett., 96, 226802 (2006); https://doi.org/10.1103/PhysRevLett.96.226802.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 I. Shtablavyi, N. Popilovskyi, Yu. Nykyruy, S. Mudry
This work is licensed under a Creative Commons Attribution 3.0 Unported License.