Electronic and magnetic properties of ZnSeS solid solution modified by Mn impurity, Zn vacancy and pressure


  • S.V. Syrotyuk Lviv Polytechnic National University, Lviv, Ukraine
  • A.Y. Nakonechnyi Lviv Polytechnic National University, Lviv, Ukraine
  • Yu.V. Klysko Lviv Polytechnic National University, Lviv, Ukraine
  • H.I. Vlakh-Vyhrynovska Lviv Polytechnic National University, Lviv, Ukraine
  • Z.E. Veres Lviv Polytechnic National University, Lviv, Ukraine




AIIBVI Solid Solutions, Strongly Correlated Electrons, Energy Spectrum, Density of Electronic States


The spin-polarized electronic energy spectra of the ZnSeS solid solution were obtained based on calculations for the supercell, which contains 64 atoms. At the first stage, the properties of the material based on the Mn:ZnSeS supercell, in which Mn replaces the Zn atom, were calculated. The calculation results reveal that the material is a semiconductor for both spin orientations. The second stage is based on the simultaneous presence of a Mn impurity and a cation vacancy. Comparing the results of the first two stages allows us to reveal significant changes in the electronic energy structure caused by the cation vacancy. The material with a vacancy exhibits metallic properties for both spin orientations. The third stage is implemented for the supercell without a vacancy, but under the action of hydrostatic pressure. The material exhibits semiconducting properties for both values of the spin moment. At the fourth stage, the Mn:ZnSeS supercell with a vacancy and under pressure is considered. In the presence of pressure and a VZn vacancy, the ZnMnSeS material exhibits metallic properties for both spin orientations. A material with a vacancy and under pressure can be characterized as a magnetic metal.


O.G. Trubaieva, M.A. Chaika, A.I. Lalayants, The growth, structure and luminescence properties of ZnSe1-xSx materials, Lith. J. Phys., 58(3), 254 (2018); https://doi. org/10.3952/physics.v58i3.3813.

V.A. Litichevskyi, A.D. Opolonin, S.N. Galkin, A.I. Lalaiants, E.F. Voronkin, A dual-ener¬gy X-ray detector on the basis of ZnSe(Al) and LGSO(Ce) composite scintillators, Instrum. Exp. Tech. 56, 436 (2013); https://doi.org/10.1134/S0020441213040209.

U. Hotje, C. Rose, M. Binnewies, Lattice constants and molar volume in the system ZnS, ZnSe, CdS, CdSe, Solid State Sci. 5, 1259 (2003); https://doi.org/10.1016/S1293-2558(03)00177-8.

K.A. Katrunov, A.L. Lalayants, V.N. Baumer, S.N. Galkin, L.P. Galchinetskii, and E.J. Brilyova, Peculiarities of scintillation materials based on ZnS–ZnTe solid solutions, Funct. Mat. 20, 384 (2013); https://doi.org/10.15407/fm20.03.384.

Y. Shirakawa, H. Kukimoto, The electron trap associated with an anion vacancy in ZnSe and ZnSxSe1–x, Solid State Commun. 34, 359 (1980); https://doi.org/10.1016/0038-1098(80)90575-X.

М.М. Slyotov, О.М. Slyotov, Preparation and luminescent properties of zinc sulfoselenide thin films, Phys. Chem. Solid State, 20, 354 (2019); https://doi.org/10.15330/pcss.20.4.354-359.

O.P. Malyk, S.V. Syrotyuk, Heavy hole scattering on intrinsic acceptor defects in cadmium telluride: calculation from the first principles, Phys. Chem. Solid State, 23(1), 89 (2022); https://doi.org/10.15330/pcss.23.1.89-95.

H.A. Ilchuk, L.I. Nykyruy, A.I. Kashuba, I.V. Semkiv, M.V. Solovyov, B.P. Naidych, V.M. Kordan, L.R. Deva, M.S. Karkulovska, R.Y. Petrus, Electron, phonon, optical and thermodynamic properties of CdTe crystal calculated by DFT, Phys. Chem. Solid State, 23(2), 261 (2022); https://doi.org/10.15330/pcss.23.2.261-269.

A.I Kashuba, B. Andriyevsky, I.V. Semkiv, H.A. Ilchuk, R.Y. Petrus, Ya.M. Storozhuk, First-principle calculations of band energy structure of CdSe0.5S0.5 solid state solution thin films, Phys. Chem. Solid State, 23, 52 (2022); https://doi.org/10.15330/pcss.23.1.52-56.

P. Fjodorow, M.P. Frolov, Y.V. Korostelin, V.I. Kozlovsky, C. Schulz, S.O. Leonov, Y.K. Skasyrsky, Room-temperature Fe:ZnSe laser tunable in the spectral range of 3.7–5.3 µm applied for intracavity absorption spectroscopy of CO2 isotopes, CO and N2O, Opt. Express, 29(8), 12033 (2021); https://doi.org/10.1364/OE.422926.

K. Karki, S.Yu, V. Fedorov, D. Martyshkin, S. Subedi, Y. Wu, and S. Mirov, Hot-pressed ceramic Fe:ZnSe gain-switched laser, Opt. Mater. Express, 10, 3417 (2020); https://doi.org/10.1364/OME.410941.

V.I. Kozlovsky, Y.V. Korostelin, Y.P. Podmar’kov, Y.K. Skasyrsky, M.P. Frolov, Middle infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe lasers: new results, J. Phys.: Conf. Ser. 740, 012006 (2016); https://doi.org/10.1088/1742-6596/740/1/012006.

S.V. Syrotyuk, O.P. Malyk, Effect of Strong Correlations on the Spin-polarized Electronic Energy Bands of the CdMnTe Solid Solution, J. Nano- Electron. Phys., 11, 01009 (2019); https://doi.org/10.21272/jnep.11(1).01009.

S.V. Syrotyuk, Moaid K. Hussain, The Effect of Cr Impurity and Zn Vacancy on Electronic and Magnetic Properties of ZnSe Crystal, Phys. Chem. Solid State: 22, 529 (2021); https://doi.org/10.15330/pcss.22.3.529-534.

S.V. Syrotyuk, M.K. Hussain, Influence of Pressure on the Electronic and Magnetic Properties of the ZnSeTe Solid Solution Doped with Fe Atoms, J. Nano- Electron. Phys. 15, 05002 (2023); https://doi.org/10.21272/jnep.15(5).05002.

S.V. Syrotyuk, O.P. Malyk, Yu.V. Klysko, The influence of pressure on the spin-polarized electronic structure of ZnSeTe:T (Т=Cr, Mn, Fe) doped solid solution, Mol. Cryst. Liq. Cryst., 766, 121 (2023); https://doi.org/10.1080/15421406.2023.2238995.

G. Gulyamov, S.B. Utamuradova, M.G. Dadamirzaev, N.A. Turgunov, M. K. Uktamova, K.M. Fayzullaev, A.I. Khudayberdiyeva, A.I. Tursunov, Calculation of the total current generated in a tunnel diode under the action of microwave and magnetic fields, East Eur. J. Phys. 2, 221 (2023); https://doi.org/10.26565/2312-4334-2023-2-24.

X. Gonze et al., Recent developments in the ABINIT software package, Comput. Phys. Comm. 205, 106 (2016); https://doi.org/10.1016/j.cpc.2016.04.003.

P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50, 17953 (1994); https://doi.org/10.1103/PhysRevB.50.17953.

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letters 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-orrelation functional, J. Chem. Phys. 110, 5029 (1999); https://doi.org/10.1063/1.478401.




How to Cite

Syrotyuk, S., Nakonechnyi, A., Klysko, Y., Vlakh-Vyhrynovska, H., & Veres, Z. (2024). Electronic and magnetic properties of ZnSeS solid solution modified by Mn impurity, Zn vacancy and pressure. Physics and Chemistry of Solid State, 25(1), 65–72. https://doi.org/10.15330/pcss.25.1.65-72



Scientific articles (Physics)