Synthesis and ionic conductivity of glass ceramics with general composition (2-х)Na2О : хМІ2О : 3CoО : 2P2O5 (х = 0 or 0.05, МІ – Li, K)
DOI:
https://doi.org/10.15330/pcss.25.3.540-545Keywords:
complex phosphates, glass ceramics, ion conductivity, FTIR spectroscopyAbstract
Glass ceramic samples with general composition: (2-х)Na2О : хМІ2О : 3CoО : 2P2O5 (х = 0 or 0.05, МІ – Li, K) were synthesized by melt method with subsequent annealing of homogeneous glass at a temperature of 650°C. According to powder X-ray diffraction data, monophase phosphates with the general composition Na4-хMІхСо3(PO4)2P2O7 which belong to the orthorhombic system (space group Pn21a) were obtained. The calculated cell parameters of prepared phosphates correlate with the size of the substituted alkali metal atom. The FTIR spectroscopy data confirm the presence of two anion types (РО4 and Р2О7) in the structure of crystalline phosphates. The ionic conductivity properties of the synthesized samples were investigated using impedance spectroscopy method. Analisys of results showed an increase of specific conductivity at the partial substitution of sodium atoms (0.1 Na→0.1Li) in an initial structure Na4Со3(PO4)2P2O7. The obtained results can be in future used in the preparation of solid electrolytes for sodium-ion batteries based on substituted glass ceramics with the composition Na4-хMІхСо3(PO4)2P2O7 with improved ion-conducting characteristics.
References
J. Kim, D.H. Seo, H. Kim, I. Park, J.K. Yoo, S.K. Jung, Y.U. Park, W.A. Goddard III, K. Kang, Unexpected discovery of low-cost maricite NaFePO4 as a highperformance electrode for Na-ion batteries, Energy Environ. Sci., 8, 540 (2015); https://doi.org/10.1039/c4ee03215b.
S.M. Oh, S.T. Myung, J. Hassoun, B. Scrosati, Y.K. Sun, Reversible NaFePO4 electrode for sodium secondary batteries, Electrochem. Commun. 22, 149 (2012); https://doi.org/10.1016/j.elecom.2012.06.014.
W. Tang, X. Song, Y. Du, C. Peng, M. Lin, S. Xi, B. Tian, J. Zheng, Y. Wu, F. Pan, K. P. Loh, High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. J. Mater. Chem. A 4, 4882 (2016); https://doi.org/10.1039/C6TA01111J.
A. Gutierrez, S. Kim, T.T. Fister, C.S. Johnson, Microwave-Assisted Synthesis of NaCoPO4 Red-Phase and Initial Characterization as High Voltage Cathode for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 9, 4391 (2017); https://doi.org/10.1021/acsami.6b14341.
V. Priyanka, G. Savithiri, R. Subadevi, M. Sivakumar, An emerging electrochemically active maricite NaMnPO4 as cathode material at elevated temperature for sodium-ion batteries. Appl. Nanosci., 10, 3945 (2020); https://doi.org/10.1007/s13204-020-01506-8.
X. Zhang, X. Rui, D. Chen, H. Tan, D. Yang, S. Huang, Y. Yu, Na3V2(PO4)3: An advanced cathode for sodium-ion batteries. Nanoscale, 11, 2556 (2019); https://doi.org/10.1039/C8NR09391A.
S.K. Pal, R. Thirupathi, S. Chakrabarty, S. Omar, Improving the Electrochemical Performance of Na3V2(PO4)3 Cathode in Na-Ion Batteries by Si-Doping, ACS Appl. Energy Mater. 3, 12054 (2020); https://doi.org/10.1021/acsaem.0c02188.
Y. Niu, Y. Zhang, M. Xu, A review on pyrophosphate framework cathode materials for sodium-ion batteries, J. Mater. Chem. A, 7, 15006 (2019); https://doi.org/10.1039/C9TA04274A.
P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S.-C. Chung, N. Yabuuchi, S. Komaba, A. Yamada, A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries, RSC Adv., 3, 3857 (2013); https://doi.org/10.1039/C3RA23026K.
A. Gezović, M. J. Vujković, M. Milović, V. Grudić, R. Dominko, S. Mentus, Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook, Energy Storage Materials, 37, 243 (2021); https://doi.org/10.1016/j.ensm.2021.02.011.
M. Nose, H. Nakayama, K. Nobuhara, H. Yamaguchi, S. Nakanishi, H. Iba, Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries, J. Power Sour., 234, 175 (2013); https://doi.org/10.1016/j.jpowsour.2013.01.162.
M. Nose, K. Nobuhara, S. Shiotani, H. Nakayama, S. Nakanishia, H.Ibaa, Electrochemical Li+ insertion capabilities of Na4-xCo3(PO4)2P2O7 and its application to novel hybrid-ion batteries, RSC Adv., 4, 9044 (2014); https://doi.org/10.1039/C3RA45836A.
F. Yang, Q. Liu, W. Xie, P. Xie, J.Shang, X. Shu, High-Content Lithium Aluminum Titanium Phosphate-Based Composite Solid Electrolyte with Poly(ionic liquid) Binder, Polymers (Basel). 14(7), 1274 (2022); https://doi.org/10.3390/polym14071274.
L. Gao, R. Zhao, S. Han, S. Li, R. Zou, Y. Zhao, Antiperovskite Ionic Conductor Layer for Stabilizing the Interface of NASICON Solid Electrolyte Against Li Metal in All-Solid-State Batteries. Batter. Supercaps. 4, 1491(2021); https://doi.org/10.1002/batt.202100123.
H. Raj, T. Fabre, M. Lachal, A. Neveu, J. Jean, M. C. Steil, R.Bouchet, V. Pralong, Stabilizing the NASICON Solid Electrolyte in an Inert Atmosphere as a Function of Physical Properties and Sintering Condi- tions for Solid-State Battery Fabrication. ACS Applied Energy Materials, 6(3), 1197 (2023); https://doi.org/10.1021/acsaem.2c02464.
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu, Z. Chen, A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790 (2020); https://doi.org/10.1039/D0CS00305K.
F. Sanz, C. Parada, J.M. Rojo, C. Ruíz-Valero, Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4MII3(PO4)2 (P2O7) (MII = Mn, Co, Ni), Chem. Mater., 13 1334 (2001); https://doi.org/10.1021/cm001210d.
F. Sanz, C. Parada, U. Amador, M.A. Monge, C. Ruíz-Valero, Na4Co3(PO4)2P2O7, a new sodium cobalt phosphate containing a three-dimensional system of large intersecting tunnels, J. Solid State Chem., 123, 129 (1996); https://doi.org/10.1006/jssc.1996.0161.
S.M. Wood, C. Eames, E. Kendrick, M.S. Islam, Sodium Ion Diffusion and Voltage Trends in Phosphates Na4MII3(PO4)2 (P2O7) (M = Fe, Mn, Co, Ni) for Possible High-Rate Cathodes, J. Phys. Chem. C., 119, 15935 (2015); https://doi.org/10.1021/acs.jpcc.5b04648.
H. Moriwake, A. Kuwabara, C.A.J. Fisher, M. Nose, H. Nakayama, S. Nakanishi, H. Iba, Y. Ikuhara, Crystal and electronic structure changes during the charge- discharge process of Na4Co3(PO4)2P2O7, J. Power Sources., 326, 220 (2016); https://doi.org/10.1016/j.jpowsour.2016.07.006.
H. Zhang, I. Hasa, D. Buchholz, B. Qin, D. Geiger, S. Jeong, U. Kaiser, S. Passerini, Exploring the Ni redox activity in polyanionic compounds as conceivable high po- tential cathodes for Na rechargeable batteries, NPG Asia Mater., 9, e370 (2017); https://doi.org/10.1038/am.2017.41.
H. Kim, G. Yoon, I. Park, K.Y. Park, B. Lee, J. Kim, Y.U. Park, S.K. Jung, H.D. Lim, D. Ahn, S. Lee, K. Kang, Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries, Energy Environ. Sci. 8, 3325 (2015); https://doi.org/10.1039/c5ee01876e.
X. Ma, X. Wu, P. Shen, Rational Design of Na4Fe3(PO4)2(P2O7) Nanoparticles Embedded in Graphene: Toward Fast Sodium Storage Through the Pseudoca- pacitive Effect, ACS Appl. Energy Mater., 1, 6268 (2018); https://doi.org/10.1021/ac- saem.8b01275.
H. Kim, I. Park, D.H. Seo, S. Lee, S.W. Kim, W.J. Kwon, Y.U. Park, C.S. Kim, S. Jeon, K. Kang, New Iron-Based Mixed-Polyanion Cathodes for Lithium and Sodium Rechargeable Batteries: Combined First Principles Calculations and Experimental Study, J. Am. Chem. Soc. 134, 10369 (2012); https://doi.org/10.1021/ja3038646.
H. Kim, I. Park, S. Lee, H. Kim, K.Y. Park, Y.U. Park, H. Kim, J. Kim, H.D. Lim, W.S. Yoon, K. Kang, Understanding the electrochemical mechanism of the new iron- based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery, Chem. Mater., 25, 3614 (2013); https://doi.org/10.1021/cm4013816.
J.Y. Jang, H. Kim, Y. Lee, K.T. Lee, K. Kang, N.S. Choi, Cyclic carbonate based- electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries, Electrochem. Commun., 44, 74 (2014); https://doi.org/10.1016/j.elecom.2014.05.003.
N.V Kosova, A.A. Shindrov, Effect of Mixed Li+/Na+-ion Electrolyte on electro- chemical perforamce of Na4Fe3(PO4)2(P2O7) in hybrid batteries, Batteries, 5, 39 (2019); https://doi.org/10.3390/batteries5020039.
A.J. Fernández-Ropero, M. Zarrabeitia, M. Reynaud, T. Rojo, M. Casas-Cabanas, Toward Safe and Sustainable Batteries: Na4Fe3(PO4)2(P2O7) as a Low-Cost Cathode for Rechargeable Aqueous Na-Ion Batteries, J. Phys. Chem. C., 122, 133 (2018); https://doi.org/10.1021/acs.jpcc.7b09803.
M.H. Lee, S.J. Kim, D. Chang, J. Kim, S. Moon, K. Oh, K.Y. Park, W.M. Seong, H. Park, G. Kwon, B. Lee, K. Kang, Toward a low-cost high- voltage sodium aqueous rechargeable battery, Mater. Today. 29, 26 (2019); https://doi.org/10.1016/j.mattod.2019.02.004.
A.R. West, Solid State Chemistry and Its Applications (Wiley, Hoboken, 1984).
D.C. Sinclair, A.R.West, Electrical properties of a LiTaO3 single crystal, Phys.Rev. B Condens. Matter. 39(18), 13486 (1986); https://doi.org/10.1103/PhysRevB.39.13486.
E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications (Wiley, Hoboken, New Jersey, 2005).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 N.Yu. Strutynska, R.M. Kuzmin, Y.A. Titov, M.S. Slobodyanik
This work is licensed under a Creative Commons Attribution 3.0 Unported License.