Structural, electronic and optoelectronic characteristics by first principles calculations for CH3NH3PbBr3 hybrid perovskite

Authors

  • A. Meena Department of Physics, University of Rajasthan, Jaipur, Rajasthan, India
  • J. K. Bairwa Department of Physics, University of Rajasthan, Jaipur, Rajasthan, India
  • S. Kumari Department of Physics, University of Rajasthan, Jaipur, Rajasthan, India
  • U. Rani Department of Physics, Noida Institute of Engineering and Technology, Greater Noida, India
  • P. K. Kamlesh School of Basic and Applied Sciences, Nirwan University Jaipur, Jaipur, Rajasthan, India
  • A. P. Singh
  • Ajay Singh Verma Division of Research & Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India; University Centre for Research & Development, Department of Physics, Chandigarh University, Mohali, Punjab, India

DOI:

https://doi.org/10.15330/pcss.26.1.10-22

Keywords:

Wien2k, Solar cell, DFT, Metal lead halide perovskites (MLHP), Optoelectronics

Abstract

Employing the Wien2k code, first-principles calculations within the full potential linearized augmented plane wave (FP-LAPW) method and density functional theory (DFT) framework were utilized to determine lattice constants, interatomic distances, density of states, and band structures. Three different exchange-correlation potentials, PBE, Local Density Approximation (“LDA”), and Wo-Cohen Generalized Gradient Approximation (“WC-GGA”), were employed for evaluating structural and electronic properties. The computed lattice constants and bulk modulus were found to be in excellent agreement with experimental data, validating the accuracy of the computational approach. The Goldsmith tolerance factor and octahedral factor were computed to confirm the structural stability of the material. The direct energy band gap of 2.32 eV observed at the R-R point suggests favourable conditions for solar applications. Further improvement in the band gap was achieved using the mBJ method. The optical properties, including the dielectric function, index of refraction, extinction coefficient, absorption coefficient, reflectivity, electron energy loss function, and photoconductivity, were systematically analysed. Notably, the study reveals the reliability of CH3NH3PbBr3 as an absorption layer in solar cells, supported by the enhanced band gap and other optical properties. 

References

A. Navrotsky, Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structure, Chem. Mater., 10, 2787 (1998); http://dx.doi.org/10.1021/cm9801901.

K. R. Kendall, C. Navas, J. K. Thomas, and H.-Conrad z. Loye, Recent Developments in Oxide Ion Conductors: Aurivillius Phases, Chem. Mater., 8, 642 (1996); https://doi.org/10.1021/cm9503083.

J. M. D. Coey, M. Viret, and S. V. Molnar, Mixed-valence manganites, Adv Phys., 48(2), 167 (1999); https://doi.org/10.1080/000187399243455.

B. Náfrádi, G. Náfrádi, L. Forró, and Endre Horváth, Methylammonium Lead Iodide for Efficient X-ray Energy Conversion. J. Phys. Chem. C, 119, 25204 (2015); https://doi.org/10.1021/acs.jpcc.5b07876.

S. Yakunin, D. N. Dirin, Y. Shynkarenko, V. Morad, I. Cherniukh, O. Nazarenko, D. Kreil, T. Nauser, and M. V. Kovalenko, Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites, Nat. Photonics, 10, 585 (2016).

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131(17), 6050 (2009); https://doi.org/10.1021/ja809598r.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, and N.-G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep., 2, 591 (2012); https://doi.org/10.1038/srep00591.

U. Rani, P K Kamlesh, R. Singh, T. Kumar, R. Gupta, S. Al-Qaisi, K. Kaur, and A. S. Verma, Exploring properties of organometallic double perovskite (CH3NH3)2AgInCl6: A novel material for energy conversion devices, Mod Phys Lett B, 38(18), 2450144 (2023); https://doi.org/10.1142/S0217984924501446.

U. Rani, P. K. Kamlesh, T. Kumar Joshi, S. Sharma, R. Gupta, T. Kumar, and A. S. Verma, Computational investigation of inverse perovskite SbPX3 (X = Mg, Ca, and Sr) structured materials with applicability in green energy resources, Comput. Condens. Matter, 36, e00835 (2023); https://doi.org/10.1016/j.cocom.2023.e00835.

M. Rani, P. K. Kamlesh, S. Kumawat, U. Rani, G. Arora, and A. S. Verma, Rare earth-based oxides double perovskites A2NiMnO6 (A= La and gd): Applications in magneto-caloric, photo-catalytic and thermoelectric devices, Physica B Condens. Matter, 415645 (2023); https://doi.org/10.1016/j.physb.2023.415645.

Y. Soni, R. Agrawal, V. Yadav, P. Singh, S. Singh, U. Rani, and A. S. Verma, Electronic and optical properties of novel double perovskite compound Cs2RbInI6, J. Ovonic. Res., 19, 579 (2023); https://doi.org/10.15251/JOR.2023.195.579.

U. Rani, P K Kamlesh, T. K. Joshi, R. Singh, S. Al-Qaisi, R. Gupta, T. Kumar, and A S Verma, Electronic structure, theoretical power conversion efficiency, and thermoelectric properties of bismuth-based alkaline earth antiperovskites, J Mol Model, 29, 329 (2023); https://doi.org/10.1007/s00894-023-05732-z.

J. K. Bairwa, P K Kamlesh, U. Rani, R. Singh, R. Gupta, S. Kumari, T. Kumar, and A S Verma, Highly efficient and stable Ra2LaNbO6 double perovskite for energy conversion device applications, Mater Sci Energy Techno, 7, 61 (2024); https://doi.org/10.1016/j.mset.2023.07.005.

P. Gao, M. Grätzel, and M. K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environ. Science, 7, 2448 (2014). https://doi.org/10.1039/C4EE00942H.

K. C. Wang, J.Y. Jeng, P. S. Shen, Y. C. Chang, E. W- Guang Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo, and T. C. Wen, p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells, Sci. Reports, 4, 4756 (2014); https://doi.org/10.1038/srep04756.

L. Huang, X. Cui, C. Liu, W. Yang, W. Shi, J. Lai, and L. Wang, Improvement on performance of hybrid CH3NH3PbI3−xClx perovskite solar cells induced sequential deposition by low pressure assisted solution processing, Solar Energy, 199, 826 (2020); https://doi.org/10.1016/j.solener.2020.02.080.

D.P. McMeekin, Z. Wang, W. Rehman, F. Pulvirenti, J. B. Patel, N. K. Noel, M. B. Johnston, S. R. Marder, L. M. Herz, and H. J. Snaith, Crystallization Kinetics and Morphology Control of Formamidinium−Cesium Mixed-Cation Lead Mixed-Halide Perovskite via Tunability of the Colloidal Precursor Solution, Adv. Mater., 29, 1607039 (2017); https://doi.org/10.1002/adma.201607039.

D.P. Mcmeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, And H. J. Snaith, A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells. Science, 351, 151 (2016); https://doi.org/10.1126/science.aad5845.

Md Roknuzzaman, K. Ostrikov, K. C. Wasalathilake, C. Yan, H. Wang, and T. Tesfamichael, Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles study, Org. Electron, 59, 99 (2018); https://doi.org/10.1016/j.orgel.2018.04.051.

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater., 13, 897 (2014); https://doi.org/10.1038/nmat4014.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient hybrid solar cells based on meso-super structured organometal halide perovskites. Science, 338, 643 (2012); https://doi.org/10.1126/science.1228604.

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J. Phys. Chem. Lett., 4, 897 (2013); https://doi.org/10.1021/jz400348q.

M. Zhang, H. Yu, M. Lyu, Q. Wang, Q.; J.-H. Yun, L. Wang, Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films. Chem. Commun., 50 11727 (2014); https://doi.org/10.1039/C4CC04973J.

M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, And A. Hagfeldt, Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency, Energy Environ. Sci., 9, 1989 (2016); https://doi.org/10.1039/C5EE03874J.

S. P. Singh, and P. Nagarjuna, Organometal halide perovskites as useful materials in sensitized solar cells, Dalton Trans., 43, 5247 (2014); https://doi.org/10.1039/C3DT53503G.

S.A. Kulkarni, T. Baikie, P.P. Boix, N.Yantara, N. Mathews, and S. Mhaisalkar, Band-gap tuning of lead halide perovskites using a sequential deposition process, J. Mater. Chem. A, 2, 9221 (2014); https://doi.org/10.1039/C4TA00435C.

I. Koutselas, P. Bampoulis, E. Maratou, T. Evagelinou, G. Pagona, and G. C. Papavassiliou, Some Unconventional Organic−Inorganic Hybrid Low-Dimensional Semiconductors and Related Light-Emitting Devices, J. Phys. Chem. C, 115, 8475 (2011); https://doi.org/10.1021/jp111881b.

C. R. Li, H. T. Deng, J. Wan, Y. Y. Zheng, and W. J. Dong, Photoconductive properties of organic–inorganic hybrid perovskite (C6H13NH3)2(CH3NH3)m−1PbmI3m+1:TiO2 nanocomposites device structure, Mater.Lett., 64, 2735 (2010); https://doi.org/10.1016/j.matlet.2010.09.018.

G.S. Patrin, N.V. Volkov, and I.V. Prokhorova, Nonlinear magnetic resonance in the (CH3NH3)2CuBr4 crystal, Phys. Solid State, 46, 1891 (2004); https://doi.org/10.1134/1.1809426.

M. Rani, P K Kamlesh, S. Kumawat, U. Rani, G. Arora, and A S Verma, Ab-Initio Calculations of Structural, Optoelectronic, Thermoelectric, and Thermodynamic Properties of Mixed-Halide Perovskites RbPbBr3−xIx (x = 0 to 3): Applicable in Renewable Energy Devices, ECS J. Solid State Sci. Technol., 12, 083006 (2023); https://doi.org/10.1149/2162-8777/acec9c.

H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, A. L. and Rogach, Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature, Adv. Sci., 2(9), 1500194 (2015); https://doi.org/10.1002/advs.201500194.

F. Zhang, H. Zhong, C. Chen, X.-gang Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, Brightly luminescent and color-tunable colloidal CH3NH3PbX3(X=Br, I, Cl) quantum dots: potential alternatives for display technology, ACS Nano, 9(4), 4533 (2015); https://doi.org/10.1021/acsnano.5b01154.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. Xi Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of caesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett., 15, 3692 (2015); https://doi.org/10.1021/nl5048779.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. Il Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells, American Chemical Society, Nano Lett., 13, 1764 (2013); https://doi.org/10.1021/nl400349b.

B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, Recombination study of combined halides (Cl, Br, I) perovskite solar cells, J. Phys. Chem. Lett., 5, 1628 (2014); https://doi.org/10.1021/jz5006797.

D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J. P. Ahn, J. W. Lee, and J. K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning, Nano Letter, 15, 5191 (2015); https://doi.org/10.1021/acs.nanolett.5b01430.

A. Poglitsch and D. Weber Dynamic disorder in methylammonium tri halogen oplum bates (II) observed by millimetre wave spectroscopy, J. Chem. Phys., 87, 6373 (1987); https://doi.org/10.1063/1.453467.

E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications, The J. Phys. Chem. C, 117, 13902 (2013); https://doi.org/10.1021/jp4048659.

P. Umari, E. Mosconi, and F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications, Sci. Reports, 4, 4467 (2014); https://doi.org/10.1038/srep04467.

L. Gil-Escrig, A.M. Sempere, M. Sessolo, and H. J BolinkJ, Mixed Iodide-bromide Methylammonium Lead Perovskite Based Diodes for Light-emission and Photovoltaics, Phys. Chem. Lett, 6, 3743 (2015); https://doi.org/10.1021/acs.jpclett.5b01716.

R. A. Jishi, O. B. Ta, and A. A. Sharif, Modeling of Lead Halide Perovskites for Photovoltaic Applications, J. Phys. Chem. C, 118, 28344 (2014); https://doi.org/10.1021/jp5050145.

J. Feng and B. Xiao, Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3 (X = I and Br) Phases Predicted from HSE06. J. Phys. Chem. Lett, 5, 1278 (2014); https://doi.org/10.1021/jz500480m.

E. Mosconi, P. Umari, and G. De Angelis, Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis, Phys. Chem. Chem. Phys, 18, 27158 (2016); https://doi.org/10.1039/C6CP03969C.

M. S. Alias, I. Dursun, M. I. Saidaminov, E. M. Diallo, P. Mishra, T. K. Ng, O. M. Bakr, and B. S. Ooi, Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry, Opt. Express, 24, 16586. (2016); https://doi.org/10.1364/OE.24.016586.

J. S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, Su-Huai Wei, P. Parilla, and K. Zhu, Electronic Structure and Optical Properties of α-CH3NH3PbBr3 Perovskite Single Crystal, J. Phys. Chem. Lett, 6, 4304 (2015); https://doi.org/10.1021/acs.jpclett.5b01699.

F. Sani, S. Shafie, H. N. Lim and A. O. Musa, Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review, Materials, 11(6), 1008 (2018); https://doi.org/10.3390/ma11061008.

V.M. Goldschmidt, Die gesetze der krystallochemie, Die Naturwissenschaften, 14, 477 (1926); https://doi.org/10.1007/bf01507527.

C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Science Advances, 5, eaav0693 (2019); https://doi.org/10.1126/sciadv.aav0693.

M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, Control of the electronic phase of a manganite by mode-selective vibrational excitation, Nature, 449, 72 (2007); https://doi.org/10.1038/nature06119.

C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) halide perovskites, Acta Crystallographica Section B: Structural Science, 64, 702 (2008); https://doi.org/10.1107/S0108768108032734.

Z. Xiao, Y. Yan, Progress in theoretical study of metal halide perovskite solar cell materials, Advanced Energy Materials, 7, 1701136 (2017); https://doi.org/10.1002/aenm.201701136.

N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Materials Today, 18, 65 (2015); https://doi.org/10.1016/j.mattod.2014.07.007.

Y. Zhu, J. Zhang, Z. Qu, S. Jiang, Y. Liu, Z. Wu, F. Yang, W. Hu, Z. Xu, and Y. Dai, Accelerating stability of ABX3 perovskites analysis with machine learning, Ceramics International, 50, 6250 (2024); https://doi.org/10.1016/j.ceramint.2023.11.349.

R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32, 751 (1976).

R. A. Jishi, Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications, AIMS Materials Science, 3(1), 149 (2016); https://doi.org/10.3934/matersci.2016.1.149.

N.G. Park, Perovskite solar cells: an emerging photovoltaic technology, Materials Today, 18(2), 65 (2015); https://doi.org/10.1016/j.mattod.2014.07.007.

G. Kieslich, S. Sun, and A. K. Cheetham, An extended Tolerance Factor approach for organic–inorganic perovskites, Chemical Science, 6, 3430 (2015); https://doi.org/10.1039/C5SC00961H.

G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Efficient linearization of the augmented plane-wave method, Physical Review B. 64, 195134 (2001); https://doi.org/10.1103/physrevb.64.195134.

K. Schwarz, P. Blaha, G. K. H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Computer Physics Communications, 147, 71 (2002); https://doi.org/10.1016/S0010-4655(02)00206-0.

P. Blaha, Peter, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L. D. Marks, WIEN2k: An APW+ lo program for calculating the properties of solids, The Journal of chemical physics, 152, 074101 (2020); https://doi.org/10.1063/1.5143061.

P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Physical Review B, 136, 864 (1964); http://dx.doi.org/10.1103/PhysRev.136.B864.

P. Verma, C. Singh, P. K. Kamlesh, K. Kaur, and A. S. Verma, Nowotny-Juza phase KBeX (X = N, P, As, Sb, and Bi) half-Heusler compounds: applicability in photovoltaics and thermoelectric generators, J. Mol. Model., 29(1), 23 (2023); https://doi.org/10.1007/s00894-022-05433-z.

Y. Toual, S. Mouchou, U. Rani, A. Azouaoui, A. Hourmatallah, R. Masrour, A. Rezzouk, K. Bouslykhane, and N. Benzakour, Probing electronic, magnetic and thermal properties of NiMnSb Half-Heusler alloy for spintronics as an environmentally friendly energy resource: A DFT+ U and Monte Carlo study, Mater. Today Commun, 108064 (2024).

M. Bonilla, D. A. Landínez-Téllez, J. A. Rodríguez, J.A. Aguiar, and J. Roa-Rojas, Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio DFT calculations, Journal of Magnetism and Magnetic Materials, 320, e397 (2018); https://doi.org/10.1016/j.jmmm.2008.02.179.

F. Tran, R. Laskowski, P. Blaha, K. Schwarz, Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional, Physical Review B, 75, 115131 (2007); https://doi.org/10.1103/PhysRevB.75.115131.

J. P. Perdew, S. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

A. D. Becke, and E. R. Johnson, A simple effective potential for exchange. The Journal of Chemical Physics, 124, 221101 (2006); https://doi.org/10.1063/1.2213970.

A. D. Becke, M. R. Roussel, Exchange Holes in Inhomogeneous Systems: A Coordinate-Space Model. Phys. Rev. A, 39, 3761 (1989); https://doi.org/10.1103/PhysRevA.39.3761.

F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke–Johnson exchange potential. Journal of Physics: Condensed Matter, 19, 196208 (2007); https://doi.org/10.1088/0953-8984/19/19/196208.

F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett., 102, 226401 (2009); https://doi.org/10.1103/PhysRevLett.102.226401.

D. Koller, F. Tran, P. Blaha, Merits and Limits of the Modified Becke-Johnson Exchange Potential. Phys. Rev. B, 83, 195134 (2011); https://doi.org/10.1103/PhysRevB.83.195134.

S. Kumari, P. K. Kamlesh, L. Kumari, S. Kumar, S. Kumari, R. Singh, R. Gupta, M. S. Chauhan, and A. S. Verma, Progress in theoretical study of lead-free halide double perovskite Na2AgSbX6 (X = F, Cl, Br & I) thermoelectric materials, J. Mol. Model., 29, 195 (2023); https://doi.org/10.1007/s00894-023-05599-0.

U. Rani, P. K. Kamlesh, T. K. Joshi, S. Sharma, R. Gupta, S. Al-Qaisi, and A. S. Verma, Alkaline earth based antiperovskite AsPX3 (X = Mg, Ca, and Sr) materials for energy conversion efficient and thermoelectric applications., Physica Scripta, 98(7), 075902 (2023); https://doi.org/10.1088/1402-4896/acd88a.

P. K. Kamlesh, R. Agarwal, U. Rani, and A. S. Verma, First-principles calculations of inherent properties of Rb based state-of-the-art half-Heusler compounds: Promising materials for renewable energy applications, Phys. Scr., 96(11), 115802 (2021); https://doi.org/10.1088/1402-4896/ac119d.

H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, 13, 5188 (1976); https://doi.org/10.1103/physrevb.13.5188.

D. Weber, CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift Für Naturforschung B, 33(12), 1443 (1978); https://doi.org/10.1515/znb-1978-1214.

S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, and S. I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci., 7, 2614 (2014); https://doi.org/10.1039/C4EE00762J.

N. Kitazawa, Y. Watanabe, and Y. Nakamura, Optical properties of CH3NH3PbX3 (X= halogen) and their mixed-halide crystals. Journal of materials science, 37, 3585 (2002); https://doi.org/10.1023/A:1016584519829.

L. Bokdam, M., Sander, T., Stroppa, A., Picozzi, S., Sarma, D. D., Franchini, C., & Kresse, G. Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites. Scientific Reports, 6, (2016); https://doi.org/10.1038/srep28618.

M. Roknuzzaman, M.A. Hadi, M.A. Ali, M.M. Hossain, N. Jahan, M.M. Uddin, J.A. Alarco, K. Ostrikov, First hafnium-based MAX phase in the 312 family, Hf3AlC2: A first-principles study, Journal of Alloys and Compounds, 727, 616 (2017); https://doi.org/10.1016/j.jallcom.2017.08.151.

T. Zhao, W. Shi, J. Xi, D. Wang, and Z. Shuai, Intrinsic and extrinsic charge transport in CH3NH3PbI3 perovskites predicted from first-principles, Scientific Reports, 6, 19968 (2016); https://doi.org/10.1038/srep19968.

J. K. Bairwa, M. Rani, P K Kamlesh, R. Singh, U. Rani, S. Al-Qaisi, T. Kumar, S. Kumari, and A S Verma, Modelling and simulation of multifaceted properties of X2NaIO6 (X = Ca and Sr) double perovskite oxides for advanced technological applications, J Mol Model., 19, 379(2023); https://doi.org/10.1007/s00894-023-05786-z.

Pallavi, C. Singh, P. K. Kamlesh, R. Gupta, and A. S. Verma, Thermoelectric performance of cadmium based LiCdX (X = N, P, As, Sb & Bi) filled-tetrahedral semiconductors: Applications in green energy resources, Pramana, J. Phys., 97(4), 162 (2023); https://doi.org/10.1007/s12043-023-02627-9.

Downloads

Published

2025-02-17

How to Cite

Meena, A., Bairwa, J. K., Kumari, S., Rani, U., Kamlesh, P. K., Singh, A. P., & Verma, A. S. (2025). Structural, electronic and optoelectronic characteristics by first principles calculations for CH3NH3PbBr3 hybrid perovskite. Physics and Chemistry of Solid State, 26(1), 10–22. https://doi.org/10.15330/pcss.26.1.10-22

Issue

Section

Scientific articles (Physics)