Catalytic ignition, quenching and burning of acetone in air on platinum wires of different diameters

Authors

  • Oleksander Chernenko Odesa I.I. Mechnikov National University, Odesa, Ukraine
  • Valery Kalinchak Odesa I.I. Mechnikov National University, Odesa, Ukraine
  • Oleksander Kopiyka Odesa I.I. Mechnikov National University, Odesa, Ukraine
  • Anna Fedorenko Odesa I.I. Mechnikov National University, Odesa, Ukraine
  • Mykhaylo Roziznanyi Odesa I.I. Mechnikov National University, Odesa, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.1.111-117

Keywords:

catalytic oxidation, platinum wire, diameter, acetone vapor

Abstract

The relationship I/d based on the analysis of the analytical dependence of the stationary temperature of the catalyst thread on the heating current strength is proposed in the work. It allows estimating the range of current strength for a certain diameter of the catalyst thread, within which observation of ignition and extinction of the heterogeneous catalytic reaction is possible. Experimental studies for the catalytic oxidation of acetone in air on a platinum catalyst thread with diameters of 20, 70, and 95 microns showed that considering convection requires adjusting this relationship as I/d•Nu^1/2. As a result, the representation of the temperature of the catalyst thread from this complex exhibits coordination of low- and high-temperature oxidation regimes, as well as critical conditions of catalytic ignition and extinction. This assessment is possible when using an electrical heating circuit of the thread in the current stabilization mode.

References

Himanshu Sharma, Anuj Bisht, Narayanan Sethulakshmi, Sudhanshu Sharma Catalysis by substituted platinum (ionic Pt) catalysts, International Journal of Hydrogen Energy, 51 (Part B), 748 (2024); https://doi.org/10.1016/j.ijhydene.2023.08.343.

Yunli Ge, Kaixuan Fu, Qian Zhao, Na Ji, Chunfeng Song, Degang Ma, Qingling Liu Performance study of modified Pt catalysts for the complete oxidation of acetone, Chemical Engineering Science, 206, 99 (2019); https://doi.org/10.1016/j.ces.2019.05.051.

N.S. Marinkovic, M. Li, & R.R. Adzic, Pt-based catalysts for electrochemical oxidation of ethanol. Topics in Current Chemistry, 377(3), 11 (2019); https://doi.org/10.1007/s41061-019-0236-5.

R. Rizo, S. Pérez-Rodríguez, & G. García, Well-defined platinum surfaces for the ethanol oxidation reaction, ChemElectroChem, 6(18), 4725 (2019); https://doi.org/10.1002/celc.201900600.

Guangxing Yang, Qiao Zhang, HaoYu Feng Peng Platinum-based ternary catalysts for the electrooxidation of ethanol, Particuology, 58, 169 (2021); https://doi.org/10.1016/j.partic.2021.01.007.

A. Somov, A. Karelin, A. Baranov, S. Mironov, Estimation of a Gas Mixture Explosion Risk by Measuring the Oxidation Heat within a Catalytic Sensor. IEEE Trans. Ind. Electron, 64, 9691 (2017); https://doi.org/10.1109/TIE.2017.2716882.

Nikolay Samotaev, Pavel Dzhumaev, Konstantin Oblov, Alexander Pisliakov, A.; Obraztsov, I.; Ducso, C.; Biro, F. Silicon MEMS Thermocatalytic Gas Sensor in Miniature Surface Mounted Device Form, Chemosensors, 9, 340(2019). https://doi.org/10.3390/chemosensors9120340.

E. Gracia, M.T. Garcнa, A. DeLucas, J.F. Rodrнguez, I. Gracia, Copper wire as a clean and efficient catalyst for click chemistry in supercritical CO2, Catalysis Today, 346(15), 65 (2020); https://doi.org/10.1016/j.cattod.2018.12.021.

Ivan I. Ivanov, Alexander M. Baranov, Vladislav A. Talipovandets Investigation of catalytic hydrogen sensors with platinum group catalysts, Sensors & Actuators: B. Chemical, 346, 130515 (2021); https://doi.org/10.1016/j.snb.2021.130515.

P. Cho, C.K. Law, Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum. Combustion and Flame, 66(2), 159 (1986); https://doi.org/10.1016/0010-2180(86)90088-x.

D.A. Frank-Kamenet︠s︡kiĭ, N. Thon, Diffusion and heat exchange in chemical kinetics. (Princeton University Press, Princeton, New Jersey, 1955).

V.V. Kalinchak, O.S. Chernenko, Thermophysics of flameless combustion of gases. (Astroprint. Odesa, 2020). http://dspace.onu.edu.ua:8080/handle/123456789/28625

V.V. Kalinchak, O.S. Chernenko, M.V. Sikorsky, E. V. Britavsky, S.A. Stukalov, Experimental studies of flameless combustion of gas mixtures with admixtures of ammonia, hydrogen and acetone on a platinum wire. Physics of Aerodisperse Systems. 55, 71 (2018); https://doi.org/10.18524/0367-1631.2018.55.141337.

G. Veser, L.D. Schmidt Ignition and extinction in the catalytic oxidation of hydrocarbon sover platinum, American Institute of Chemical Engineers Journal, 42, 1077 (1996); https://doi.org/10.1002/aic.690420418.

M.P. Harold, D. Luss, An experimental study of steady-state multiplicity features of two parallel catalytic reactions. Chemical Engineering Science, 40(1), 39 (1985); https://doi.org/10.1016/0009-2509(85)85045-4.

Junjie Chen, Wenya SongCatalytic Ignition and Extinction of Very Fuel-Lean Hydrogen-Air Mixtures on Platinum Surfaces. Colloid and Surface Science, 2(1), 37 (2017); https://doi.org/10.11648/j.css.20170201.15.

Maria Mitu, Domnina Razus, Dumitru Oancea, Coupled catalytic/gas phase ignition of propane-oxygen-inert mixtures on an isothermally heated platinum filament supported on quartz bar, Revista de Chimie (Bucharest), 69(4), 870 (2018); https://doi.org/10.37358/RC.18.4.6218.

T.A. Griffin, L.D. Pfefferle, Gas phase and catalytic ignition of methane and ethane in air over platinum. AIChE Journal, 36(6), 861 (1990); https://doi.org/10.1002/aic.690360607.

V.V. Каlіnchak, O.S. Chernenko, A.V. Fedorenko, Electric Resistance Hysteresis of Platinum Filament in Cold Air/Hydrogen Mixtures, Physics and chemistry of solid state, 21(3), 420 (2020); https://doi.org/10.15330/pcss.21.3.420-425.

A.S. Chernenko, V. Kalinchak, A. Kopiyka, M. Roziznanyi, A.V. Fedorenko, Catalytic oxidation of acetone and ethanol on a platinum wire, Physics and chemistry of solid state, 24(1), 166 (2023); https://doi.org/10.15330/pcss.24.1.166.-172.

A.S. Chernenko, V.V. Kalichak, M.V. Roziznanyi, O.K. Kopiyka On the possibility of using thermochemical gas analyzers in a multicomponent mixture, Sensor Electronics and Мicrosystem Technologies, 20(1), 20 (2023) https://doi.org/10.18524/1815-7459.2023.1.275944.

Zhukauskas A.A. Convective transfer in heat exchangers (Nauka, Moscow, 1982).

A.P. Hatton, D.D. James, H.W. Swire Combined forced and natural convection with low-speed air flow over horizontal cylinders, Journal of Fluid Mechanics, 42(1), 17 (1970); https://doi.org/10.1017/S0022112070001040.

Van der Hegg Zijnen B.G. Modified correlation formulae for the heat transfer by natural and by forced convection from horizontal cylinders, Appl. Sci. Res. A, (6), 129 (1956).

V.V. Kalinchak, A.S. Chernenko, V.V. Kalugin, Effect of the Concentration of a Combustible Gas on the Limiting Critical Conditions of Its Catalytic Oxidation, Journal of Engineering Physics and Thermophysics, 88, 737 (2015); https://doi.org/10.1007/s10891-015-1244-0.

Published

2025-03-12

How to Cite

Chernenko, O., Kalinchak, V., Kopiyka, O., Fedorenko, A., & Roziznanyi, M. (2025). Catalytic ignition, quenching and burning of acetone in air on platinum wires of different diameters. Physics and Chemistry of Solid State, 26(1), 111–117. https://doi.org/10.15330/pcss.26.1.111-117

Issue

Section

Scientific articles (Physics)