Theoretical Investigation on Elastic, Thermal and Ultrasonic Properties of Nanostructured HfN layers Growth on MgO (001) Substrate
DOI:
https://doi.org/10.15330/pcss.26.1.181-189Keywords:
Thin layer, Elastic properties, Thermal conductivity, Ultrasonic propertiesAbstract
In the current study, we used higher order elastic coefficients to compute the elastic, mechanical and thermo-physical characteristics of HfN/MgO (001) nanostructured materials at temperatures between 50 and 300 K. Two significant factors that are taken into consider when computing the second and third order elastic constants in this temperature(50K-300K) range are the nearest-neighbor distance and the hardness parameter. To evaluate the thermal and mechanical characteristics of the HfN/MgO (001) nanostructured layer, the analytical results of SOECs were employed to determine Young's modulus, thermal conductivity, Zener anisotropy, bulk modulus, thermal energy density, shear modulus, furthermore Poisson's ratio. Debye average velocity, hardness, melting temperature and ultrasonic Grüneisen parameters (UGPs) have been evaluated along different temperatures. The fracture/toughness (B/G) ratio in the current investigation is more than 1.75, signifying that the HfN/MgO (001) nanostructured layer is ductile in nature within this range of temperature. The selected materials fully satisfy the Born-mechanical stability requirement. It has been evaluated how long thermal relaxation takes to complete, how thermo-elastic relaxation attenuates ultrasonic waves, and how phonon-phonon interaction processes attenuate ultrasonic waves in this medium. The research results and other well-known physical characteristics are helpful for commercial applications.
References
C. Stampfl, W. Mannstadt, R. Asahi, A. J. Freeman, Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations Phys. Rev. B, 63, 155106 (2001); https://doi.org/10.1103/PhysRevB.63.155106.
A. Delin, A.O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, J.M. Wills, Optical properties of the group-IVB refractory metal compounds. Phys. Rev. B, 54, 1673 (1996); https://doi.org/10.1103/PhysRevB.54.1673.
J. E. Sundgren, B. O. Johansson, A. Rockett, S. A. Barnett, J.E. Greene, Physics and Chemistry of protective coatings, AIP Conf. Proc. No. 149 AIP, New York, 95 (1986).
C. S. Shin, D. Gall, N. Hellgren, J. Patscheider, I. Petrov, J. E. Greene, Vacancy hardening in single-crystal TiNx (001) layers, J. Appl. Phys. 93, 6025 (2003); https://doi.org/10.1063/1.1568521.
T.B. Massalski, ASM International Metals Park 2090, (1990).
B.O. Johansson, U. Helmersson, M.K. Hibbs, J.E Sundgren, Reactively magnetron sputtered HfN films II. Hardness and electrical resistivity, J. Appl. Phys.k 58, 3104 (1985); https://doi.org/10.1063/1.335813.
N. Savvides, B. Window, Electrical transport, optical properties, and structure of TiN films synthesized by low energy ion-assisted deposition, J. Mater. Res.k 1, 224 (1986); https://doi.org/10.1063/1.341468.
S.A. Barnett, L. Hultman, J.E. Sundgren, F. Ronin, S. Rohde, Epitaxial growth of ZrN on Si (001), Appl. Phys. Lett., 53, 400 (1988); https://doi.org/10.1063/1.99891.
K. Tanabe, H. Asano, Y. Katoh, O. Michigami, Properties of Superconducting ZrN Thin Films Deposited by dc Reactive Magnetron Sputtering, Japanese J. Appl. Phys., 26, 570 (1970).
H. Yanagisawa, K. Sakaki, Y. Abe, M. Kawamura, S. Shinkai, Epitaxial Growth of (001) ZrN Thin Films on (001) Si by Low Temperature Process, Japan J. Appl. Phys., 44, 343 (2005);
R. D. Bringans, P. Steiner, T. Wolf, Photoemission study of the electronic structure of stoichiometric and sub stoichiometric TiN and ZrN, Phys. Rev. B, 25, 7183(1982).
H. Ljungcrantz, M. Oden, L, Hultman, J. E. Greene, J. E. Sundegren, Nano indentation studies of single‐crystal (001) ‐, (011) ‐, and (111) ‐oriented TiNx layers on MgO, J. Appl. Phys., 80, 6725(1995); https://doi.org/10.1063/1.363799.
P. Villars, L. D. Calvert, Person’s handbook of crystallographic data for intermetallic phases, ASM International, Materials Park OH (1991).
K. Brugger, Thermodynamic Definition of Higher Elastic Coefficients, Phys. Rev., 133, A1611 (1964); https://doi/10.1103/PhysRev.133.A1611.
P.B. Ghate, Third-Order Elastic Constant of Alkali Halide Crystals, Phys. Rev., 139, A1666 (1965); https://doi.org/10.1103/PhysRev.139.A1666.
S. Mori, Y. Hiki, Calculations of the Third and Fourth-Order Elastic Constants of Alkali Halide Crystals, J. Phys. Soc. Japan, 45, 1449 (1975): https://doi/10.1143/JPSJ.45.1449.
P. K. Yadawa, R. R. Yadav, Ultrasonic Study of Intermediate-valent Intermetallic YbAl2 at different physical conditions, Multidiscipline Modelling in Materials and Structures, 5, 59 (2009); https://doi.org/10.1108/15736105200900004.
R. Hill, The Elastic Behavior of Crystalline Aggregate, Proc. Phys. Soc. Sec. A, 65, 349 (1952); https://doi.org/10.1088/0370-1298/65/5/307.
D. Singh, S. Kaushik, S. Tripathi, V. Bhalla, A. K. Gupta, Mechanical and thermo-physical properties of the rare earth Monopnictides, Arab J Sci Eng., 39, 485 (2014); https://doi.org/10.1007/s13369-013-0845-1.
S. F. Pugh, Relation between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag., 45, 823 (1954); https://doi.org/10.1080/14786440808520496.
D. G. Pettifor, Theoretical predictions of structure and related properties of intermetallic, Mater. Sci. Technol., 8, 345 (1992); https://doi.org/10.1179/mst.1992.8.4.345.
S. Bhajanker, V. Srivastava, G. Pagare, S.P. Sanyal, J. Phys. Conf. Ser., 377 (2012); https://link.springer.com/article/10.1007/s10765-016-2038-0.
Q.X. Chen, H. Niu, D. Li, Y. Li, Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses, Intermetallics, 199, 1275 (2012); https://link.springer.com/article/10.1007/s10765-016-2038-0.
M.E. Fine, L.D. Brown, H.L. Marcus, Elastic Constants versus Melting Temperature in Metals, Scripta Metall., 18, 951 (1984); https://doi.org/10.1016/0036-9748(84)90267-9.
V. Bhalla, D. Singh, S. K. Jain, Mechanical and thermo-physical properties of the rare earth Monopnictides, International Journal of Computational Materials Science and Engineering, 5, 1650012 (2016); http://dx.doi.org/10.1142/S2047684116500123.
W. P. Mason, Academic Press Inc., 237, (1965); https://www.worldcat.org/title/physical-acoustics-principles-and-methods-vol-1-part-a/oclc/463203402.
W.P. Mason, Relation between Third order Elastic Moduli and the Thermal Attenuation of Ultrasonic Wave in Non-conducting and Metallic Crystals, J. Acoustic Soc., 40, 852 (1966); https://doi.org/10.1121/1.1910158.
D.E. Gray, AIP Handbook, 3rd edition (New York, Mc Graw Hill Co. 1956); http://web.ipb.ac.id/~erizal/hidrolika/Chow%20-%20OPEN%20CHANNEL%20HYDRAULICS.pdf.
C. Oligschleger, R.O. Jones, S. M. Riemann, H. R. Schober, Erratum: Model interatomic potential for simulations in selenium, Phys. Rev., 102, 6165 (2020); https://doi.org/10.1103/PhysRevB.102.099901.
H.S. Seo, T.Y. Lee, I. Petrov, J.E. Greene, Growth and physical properties of epitaxial HfN layers on MgO (001), J. Appl. Phys., 96, 878 (2004); https://doi.org/10.1063/1.1759783.
M. Landa, V. Novak, P. Sedlak, P. Sittner, Ultrasonic characterization of Cu, Al, Ni single crystals lattice stability in the vicinity of the phase transition, Ultrasonics, 42, 519 (2004); https://doi.org/10.1016/j.ultras.2004.01.029.
A.K. Prajapati, S. Rai, P. Srivastav, P. K. Yadawa, Theoretical investigation on mechanical, thermal and ultrasonic properties of epitaxial nanostructured ZrN layers growth on MgO (001) substrate, Chem.Phys. Mater., 2, 253 (2023); https://doi.org/10.1016/j.chphma.2023.02.003.
V. Kanchana, G. Vaitheeswaran, X. Zhang, Y. Ma, A. Svane, O. Eriksson, Lattice dynamics and elastic properties of 4f electron system: CeN, Phys. Rev. B, 84, 205135 (2011); http://dx.doi.org/10.1103/PhysRevB.84.205135.
N. Yadav, S.P. Singh, A.K. Maddheshiya, P.K. Yadawa, R.R. Yadav, Mechanical and thermo-physical properties of high-temperature IrxRe1−x alloys, Phase Transitions, 93, 883 (2020); https://doi.org/10.1080/01411594.2020.1813290.
P.K. Yadawa, Effect of temperature dependent ultrasonic velocities and attenuation of GaP nanowire, Journal of theoretical and applied physics, 10, 1 (2016); https//doi.org/10.1007/s40094-016-0216-x.
D. Singh, P.K. Yadawa, S.K. Sahu, Effect of electrical resistivity on ultrasonic attenuation in NpTe, Cryogenics, 50, 476 (2010); https://doi.org/10.1016/j.cryogenics.2010.04.005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pramod Kumar Yadawa, Prashant Srivastav

This work is licensed under a Creative Commons Attribution 3.0 Unported License.