A quantum chemistry study on the interaction between silica surface and aqueous alkaline solutions

Authors

  • A. A. Kravchenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • E. M. Demianenko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • A. G. Grebenyuk Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • V. V. Lobanov Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.19.1.74-78

Keywords:

silica, alkali metal hydroxides, density functional theory

Abstract

A quantum chemical analysis has been carried out of the equilibrium structure and energy parameters of hydrated Li+, Na+, and K+ cations interacting with ionized silica surface by means of density functional theory method with extended basis set 6-31++G(d,p) and exchange-correlation functional B3LYP. The calculated adsorption energy values related to those cations reproduce the experimental adsorption row of alkali metal cations at pH = 10.

References

[1] Medical chemistry and clinical application of silicon dioxide / A. A. Chuiko, Ed. Nauk. dumka, Kyiv. 415 pp. (2003). (In Russian).

[2] T. Zuyi, Z. Hongxia. Acidity and Alkali Metal Adsorption on the SiO2–Aqueous Solution Interface // J. Colloid Interface Sci., 252(1), pp. 15-20 (2002).

[3] Silica-based sorbents in radiochemistry / B. N. Laskorin, Ed. Atomizdat, Moscow. 304 p. (1977). (In Russian).

[4] А. А. Kravchenko, А. G. Grebenyuk, V. V. Lobanov, E. M. Demianenko, O. M. Tsendra. A quantum chemistry study on the interaction between silica surface and aqueous alkaline solution // Collection «Surrface», 5(20), P. 63-68 (2013).

[5] A. A. Kravchenko, E. M. Demianenko, O. M. Tsendra, V. V. Lobanov, A. G. Grebenyuk, M. I. Terets. Simulation of the interaction between silica surface and acid or alkaline aqueous media // Collection «Surrface», 7(22), P. 36-41 (2015). (In Ukrainian).

[6] E. J. Baerends, O. V. Gritsenco. A quantum chemical view of density functional theory // J. Phys. Chem. A, 101(30), pp. 5383-5403 (1997).

[7] A. D. Becke. Density functional thermochemistry. III. The role of exact exchange // J. Chem. Phys., 98(7), pp. 5648-5653 (1993).

[8] C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B, 37(2), pp. 785-789 (1988).

[9] M. Cossi, V. Barone, R. Cammi, J. Tomasi. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model // Chem. Phys. Lett., 255(4-6), pp. 327-335 (1996).

[10] A. Fortunelli, J. Tomasi. The implementation of density functional theory within the polarizable continuum model for salvation // Chem. Phys. Lett., 231(1). pp. 34-39 (1994).

[11] M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al. General atomic and molecular electronic-structure system: Review // J. Comput. Chem., 14(11), pp. 1347-1363 (1993).

[12] R. K. Iler. The chemistry of silica. New York – Chichester – Brisbano - Toronto, Wiley Interscience (1978).

[13] E. Demianenko, M. Ilchenko, A. Grebenyuk, V. Lobanov. A theoretical study on orthosilicic acid dissociation in water clusters // Chem. Phys. Lett., 515(4-6), pp. 274-277 (2011).

[14] Yu. I. Smolin, Yu. F. Shepelev, I. K. Butikova. Determination of the crystal structure of sodium hydrosilicate Na3HSiO4∙5H2O // Crystallography Reports, 18(2), P. 281-286 (1973). (In Russian).

[15] P. P. Williams, L. S. Dent Glasser. Sodium Silicate Hydrates. IV. Location of Hydrogen Atoms in Na2O•SiO2•6H2O by Neutron Diffraction // Acta Cryst., 27, pp. 2269-2275 (1971).

Published

2018-03-15

How to Cite

Kravchenko, A. A., Demianenko, E. M., Grebenyuk, A. G., & Lobanov, V. V. (2018). A quantum chemistry study on the interaction between silica surface and aqueous alkaline solutions. Physics and Chemistry of Solid State, 19(1), 74–78. https://doi.org/10.15330/pcss.19.1.74-78

Issue

Section

Review