Seasonal variability of water parameters and construction of laccase biosensors using ureasil polymers for analysis of water pollutions
DOI:
https://doi.org/10.15330/pcss.25.3.461-470Keywords:
underground water, organoleptic and physico-chemical indicators, polymers, positron annihilation, free volume, crosslinking, laccase, biosensors, water pollutionAbstract
Physical and chemical indicators of underground waters of the Skole region were studied. The samples were taken from natural water sources of Skole district of Lviv region and analyzed within organoleptic and physico-chemical indicators of the quality of water. The organoleptic and physico-chemical indicators of the quality of natural water sources of the studied area meet the requirements of the State sanitary norms and rules. Organic-inorganic ureasil polymers with different precursors were used as holding matrixes in construction of laccase biosensors for analysis of water pollution. Cyclic voltammetry and chronoamperometric measurements were carried out to estimate the main parameters of the constructed biosensors. It is found that the sensitivity of the constructed biosensors correlates well with the network properties (free volume and crosslinking) of the investigated polymers studied using positron annihilation lifetime spectroscopy and swelling measurements. The same correlation was also earlier reported for ureasil composites of different prehistory and photopolymers and it seems to be universal that allows controlled biosensing according to the required needs of analysis.
References
State sanitary norms and rules (DSanPin2.2.4-171-10). Hygienic requirements for drinking water intended for human consumption (Kyiv, 2010).
DSTU 7525: 2014 Drinking water. Requirements and methods of quality control (Kyiv, 2014).
M. Rodríguez-Delgado, N. Ornelas-Soto, In Green Technologies and Environmental Sustainability: ed. R. Singh, S. Kumar (Springer International Publishing AG), 45 (2017); https://doi.org/10.1007/978-3-319-50654-8_2.
J.R.O. Neto, S.G. Rezende, G.S. Lobon, T.A. Garcia, I.Y.L. Macedo, L.F. Garcia, V.F. Alves, I.M.S. Torres, M.F. Santiago, F. Schmidt, E.S. Gil, Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples, Food Chemistry, 237, 1118 (2017); https://doi.org/10.1016/j.foodchem.2017.06.010.
S.R. Yashas, B.P. Shiwakumara, T.H. Udayashankara, B.M. Krishna, Laccase biosensor: Green technique for quantification of phenols in wastewater (A review), Oriental Journal of Chemistry, 34(2), 631 (2018); https://doi.org/10.13005/ojc/340204.
L. Mohtar, P. Aranda, G.A. Messina, M.A. Nazareno, S.V. Pereira, J. Raba, F.A. Bertolino, Amperometric biosensor based on laccase immobilized onto a nanostructured screen-printed electrode for determination of polyphenols in propolis, Microchemical Journal, 144, 13 (2019); https://doi.org/10.1016/j.microc.2018.08.038.
C.F. Thurston, The structure and function of fungal laccases, Microbiology, 140, 19 (1994); https://doi.org/10.1099/13500872-140-1-19.
K. Piontek, M. Antorini, T. Choinowski, Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers, The Journal of Biological Chemistry, 277(40), 37663 (2002); https://doi.org/10.1074/jbc.M204571200.
P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, G. Sannia, Laccases: a never-ending story, Cellular and Molecular Life Sciences, 67, 369 (2010); https://doi.org/10.1007/s00018-009-0169-1.
M.M. Rodríguez-Delgado, G.S. Alemán-Nava, J.M. Rodríguez-Delgado, G. Dieck-Assad, S.O. Martínez-Chapa, D. Barceló, R. Parra, Laccase-based biosensors for detection of phenolic compounds, Trends in Analytical Chemistry, 74, 21 (2015); https://doi.org/10.1016/j.trac.2015.05.008.
S. Datta, R. Veena, M.S. Samuel, E. Selvarajan, Immobilization of laccases and applications for the detection and remediation of pollutants: a review, Environmental Chemistry Letters, 19, 521 (2021); https://doi.org/10.1007/s10311-020-01081-y.
L. Arregui, M. Ayala, X. Gómez-Gil, G. Gutiérrez-Soto, C.E. Hernández-Luna, M.H. de los Santos, L. Levin, A. Rojo-Domínguez, D. Romero-Martínez, M.C.N. Saparrat, M.A. Trujillo-Roldán, N.A. Valdez-Cruz, Laccases: structure, function, and potential application in water bioremediation, Microbial Cell Factories, 18, 200 (2019); https://doi.org/10.1186/s12934-019-1248-0.
M. Fernández-Fernández, M.Á. Sanromán, D. Moldes, Recent developments and applications of immobilized laccase, Biotechnology Advances, 31, 1808 (2013); https://doi.org/10.1016/j.biotechadv.2012.02.013.
T. Kavetskyy, O. Smutok, M. Gonchar, O. Demkiv, H. Klepach, Y. Kukhazh, O. Šauša, T. Petkova, V. Boev, V. Ilcheva, P. Petkov, A.L. Stepanov, Laccase-containing ureasil-polymer composite as the sensing layer of an amperometric biosensor, Journal of Applied Polymer Science, 134, 45278 (2017); https://doi.org/10.1002/app.45278.
T. Kavetskyy, O. Šauša, K. Čechová, H. Švajdlenková, I. Maťko, T. Petkova, V. Boev, V. Ilcheva, O. Smutok, Y. Kukhazh, M. Gonchar, Network properties of ureasil-based polymer matrixes for construction of amperometric biosensors as probed by PALS and swelling experiments, Acta Physica Polonica A, 132, 1515 (2017); https://doi.org/10.12693/APhysPolA.132.1515.
T.S. Kavetskyy, O. Smutok, M. Gonchar, O. Šauša, Y. Kukhazh, H. Švajdlenková, T. Petkova, V. Boev,
V. Ilcheva, In Advanced Nanotechnologies for Detection and Defence against CBRN Agents, ed. P. Petkov, D. Tsiulyanu, C. Popov, W. Kulisch (Springer, Dordrecht), 309 (2018); https://doi.org/10.1007/978-94-024-1298-7_30.
T.S. Kavetskyy, H. Švajdlenková, Y. Kukhazh, O. Šauša, K. Čechová, I. Maťko, N. Hoivanovych, O. Dytso, T. Petkova, V. Boev, V. Ilcheva, In Advanced Nanotechnologies for Detection and Defence against CBRN Agents, ed. P. Petkov, D. Tsiulyanu, C. Popov, W. Kulisch (Springer, Dordrecht), 333 (2018); https://doi.org/10.1007/978-94-024-1298-7_32.
T. Kavetskyy, O. Smutok, O. Demkiv, S. Kasetaite, J. Ostrauskaite, H. Švajdlenková, O. Šauša, K. Zubrytska, N. Hoivanovych, M. Gonchar, Dependence of operational parameters of laccase-based biosensors on structure of photocross-linked polymers as holding matrixes, European Polymer Journal, 115, 391 (2019); https://doi.org/10.1016/j.eurpolymj.2019.03.056.
M. Goździuk, T. Kavetskyy, D. Massana Roquero, O. Smutok, M. Gonchar, D.P. Královič, H. Švajdlenková, O. Šauša, P. Kalinay, H. Nosrati, M. Lebedevaite, S. Grauzeliene, J. Ostrauskaite, A. Kiv, B. Zgardzińska,
UV-cured green polymers for biosensorics: correlation of operational parameters of highly sensitive biosensors with nano-volumes and adsorption properties, Materials, 15, 6607 (2022); https://doi.org/10.3390/ma15196607.
M. Goździuk, B. Zgardzińska, T. Kavetskyy, Research on the sorption properties of biopolymer matrix based on soybean oil for the construction of biosensors to detect xenobiotics, Acta Physica Polonica B Proceedings Supplement, 15, 4-A5 (2022); https://doi.org/10.5506/APhysPolBSupp.15.4-A5.
D.P. Královič, K. Cifraničová, O. Šauša, H. Švajdlenková, T. Kavetskyy, A. Kiv, The process of photopolymerization of acrylated soybean oil-based epoxides investigated by positron annihilation lifetime spectroscopy, Chemical Papers, 77, 7257 (2023); https://doi.org/10.1007/s11696-022-02607-0.
T. Kavetskyy, V. Boev, V. Ilcheva, Y. Kukhazh, O. Smutok, L. Pan’kiv, O. Šauša, H. Švajdlenková, D. Tatchev, G. Avdeev, E. Gericke, A. Hoell, S. Rostamnia, T. Petkova, Structural and free volume characterization of sol-gel organic-inorganic hybrids, obtained by co-condensation of two ureasilicate stoichiometric precursors, Journal of Applied Polymer Science, 138, e50615 (2021); https://doi.org/10.1002/app.50615.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 T.S. Kavetskyy, O.M. Demkiv, A.M. Pryima, N.K. Hoivanovych, I.V. Bryndzia, I.V. Briukhovetska, I.F. Drozd, S.V. Voloshyn, G.M. Kossak, V.M. Senkiv, O.I. Mykytchyn, G.V. Krechkivska, L.M. Kropyvnytska, S.Y. Voloshanska, A.E. Kiv
This work is licensed under a Creative Commons Attribution 3.0 Unported License.