Threshold-free method for determining the composition of a two-phase composite from an microscopy images
DOI:
https://doi.org/10.15330/pcss.26.1.146-150Keywords:
composite material, material analysis, computer modeling, computational methods, image analysisAbstract
A new method is proposed for estimating the quantitative analysis of the composition of two-component composites from an image. This method does not rely on a binarization threshold and offers greater accuracy compared to traditional methods that do. It is robust to contrast changes and performs well across a wide range of image contrasts.
References
V.A. Komarov, A.A. Pavlov, Determination of fibers volume fraction in layered composite materials by optical methods. Computer Optics, 46(3), 473 (2022); http://doi.org/10.18287/2412-6179-CO-1068.
С.V. Litovchenko, T.V. Malykhina, L.O. Shpahina, V.O. Shpahina, Automation of the analysis of metallographic structures. Bulletin of Kharkiv National University, 960, 215 (2011).
A.F. Tarasov, L.V. Vasilyeva, M.A. Efremov, Automation of processing of microstructures of metals based on contour and texture analysis of images. Scientific works of DonNTU, 2(25), 109 (2017), Series “Informatics, Cybernetics and Computer Science”; http://doi.org/10.31474/1996-1588-2017-2-25-109-117.
О.M. Gorbenko, M.L. Felshtyn, D.Yu. Usachev, P.G. Ulyanov, B.V. Senkovsky, V.K. Adamchuk, A.O. Golubok. Automatic recognition of the structures of ferrite-pearlite steels from images obtained by atomic force microscopy, Scientific Instrumentation, 22(4), 62 (2012).
Zuodong Niu, Handong Li, Research and analysis of threshold segmentation algorithms in image processing, Journal of Physics: Conf. Series, 1237(2), 1 (2019); http://doi.org/10.1088/1742-6596/1237/2/022122.
Asad Ullah, Guoquan Liu, Hao Wang, Dil Faraz Khan, Matiullah Khan A framework for image processin,analysis and visualization of materials microstructures using ImageJ package. Chinese journal of stereology and image analysis, 17(4), 301 (2012).
M.J. Demkowicz , M. Liu, I.D. McCue, M. Seita, J. Stuckner, K. Xie. Quantitative multi image analysis in metals research. MRS Communications. Computational Approaches for Materials Discovery and Development Prospective, 12(6), 1030 (2022); https://doi.org/10.1557/s43579-022-00265-7.
V. Hrytsyk, M. Petryk. Image segmentation in computer vision diagnostic systems. System technologies, 6 (113), 92 (2017).
W. Zhou, X. Ma, Y. Zhang. Research on image preprocessing algorithm and deep learning of iris recognition. Journal of Physics: Conference Series, 1621 (1), 1 (2020); http://doi.org/10.1088/1742-6596/1621/1/012008.
Amer Tahseen Abu-Jassar, Svitlana Sotnik, Tetiana Sinelnikova, Vyacheslav Lyashenko. Binarization Methods in Multimedia Systems when Recognizing License Plates of Cars. International Journal of Academic Engineering Research (IJAER), 7(2), 1 (2023); www.ijeais.org/ijaer.
James F. Peters. Foundations of Computer Vision (Springer, Canada, 2017); http://doi.org/10.1007/978-3-319-52483-2.
Jurjen Broeke, Jose Maria Mateos-Perez, Javier Pascau. Image Processing with ImageJ (Packt Publishing, 2015).
SIAMS Industrial Processing and Analysis System. http://siams.com.
A.I. Khomenko, E.V. Khomenko. Program for automation of microstructural analysis of materials. Powder Metallurgy, 1/2, 122 (2007).
A. Slipenyuk, V. Kuprin, Yu. Milman, V. Goncharuk, J. Eckert. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Materialia, 54(1), 157(2006); http://doi.org/10.1016/j.actamat.2005.08.036.
C. Rasche. Computer Vision (Bucharest, Polytechnic University of Bucharest, 2019).
N. Otsu A thresholding selection method from graylevel histogram. IEEE Trans. on Systems, Man and Cybernetics, 9, 62 (1979); http://doi.org/10.1109/TSMC.1979.4310076.
E. Polak. Numerical methods of optimization. A unified approach. (1976).
D. Bradley, G. Roth. Adaptive thresholding using the integral image. Journal of graphics tools, 12(2), 13(2007); http://doi.org/10.1080/2151237X.2007.10129236.
J. Sauvola, M. Pietikainen. Adaptive Document Binarization. Pattern Recognition, 33, 225 (2000); http://doi.org/10.1016/S0031-3203(99)00055-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I.E. Krasikova, I.V. Krasikov, V.V. Kuprin, O.O. Vasiliev

This work is licensed under a Creative Commons Attribution 3.0 Unported License.