Study of the influence concentration difference of copper in properties of cerium nanopowder
DOI:
https://doi.org/10.15330/pcss.25.4.801-810Keywords:
Cerium oxide, sol-gel, nanopowder, Energy gap, antibacterial growthAbstract
Various concentrations (3%, 6%, 9%) of copper added to pure cerium oxide nanopowder were prepared by the sol-gel method. The prepared samples were examined using different techniques to understand their surface compositional and morphological properties. The face-centered cubic (FCC) structure of CeO2:Cu was identified from X-ray diffraction (XRD) analysis. It was observed that the calculated crystalline size of the prepared powders decreased when the copper concentration increased from 3% to 9%. The surface morphology and shape of CeO2:Cu were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which images confirmed CeO2:Cu nanopowders prepared has cubic shape and uniformly well-dispersed . Moreover, a slight distortion in the surface morphology was obtained when the Cu concentration was increased. Meanwhile Bond formation between cerium and oxygen (Ce-O) was confirmed using FTIR spectroscopy. While UV and visible spectroscopy determined band gap energies of 2.63 eV for pure cerium oxide while this value decreasing when concentration of copper increasing; this because absorptance increasing powder measuered . This paper can provide possible mechanisms after results showed CeO2:Cu nanopowders have a good activity antibacterial against many pathogenic bacteria. Hence, CeO2:Cu can be used as a biomaterial in nanobiotechnology applications.
References
Y.C. Zhou, and M.N. Rahaman, Synthesis and sintering of ultrafine CeO2 powders, Journal of Materials Research, 8, 1680 (1993).
Mpumelelo Nyoka, Yahya E. Choonara, Pradeep Kumar, Pierre P. D. Kondiah, Viness Pillay, Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Applications, Nanomaterials (Basel), 10(2): article(242), 1 (2020); https://doi.org/10.3390/nano10020242.
M. Farahmandjou, M. Zarinkamar,T.P. Firoozabadi, Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method, Revista mexicana de física, 62(5), 496 (2016).
K. Kaviyarasu, E. Manikandan, Z.Y. Nuru, M. Maaza, Investigation on the structural properties of CeO2 nanofibers via CTAB surfactant, Materials Letters, 160, 61 (2015); https://doi.org/10.1016/j.matlet.2015.07.099.
C. Martínez, C. Arcos, F. Briones, I. Machado, M. Sancy M. Bustamante, The Effect of Adding CeO2 Nanoparticles to Cu–Ni–Al Alloy for High Temperatures Applications, Nanomaterials, 14(2), 143 (2024); https://doi.org/10.3390/nano14020143.
K. Saravanakumar, M.M. Ramjan, P. Suresh, V. Muthuraj, Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants, Alloys and Compounds, 664, 149 (2016); https://doi.org/10.1016/j.jallcom.2015.12.245.
K. Sakthiraj, B. Karthikeyan, Synthesis and characterization of cerium oxide nanoparticles using different solvents for electrochemical applications, Applied physics A, 126(52), (2020); https://doi.org/10.1007/s00339-019-3227-z.
Paochi Chen, Crystal Sizes and Energy Gaps of Cerium Oxide Using Co-Precipitation Method, Materials Sciences and Applications, 13, 213 (2022); https://doi.org/10.4236/msa.2022.134012.
Qiu Li Zhang, Zhi Mao Yang, Bing Jun Ding, Synthesis of Cerium Oxide Nanoparticles by the Precipitation Method, Materials Science Forum, 610-613, 233 (2009); https://doi.org/10.4028/www.scientific.net/MSF.610-613.233.
P. Tamizhdurai, Subramanian Sakthinathan, Shen-Ming Chen, K. Shanthi, S. Sivasanker, P. Sangeetha, Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite, Scientific Reports, 7 (46372), 1 (2017); https://doi.org/10.1038/srep46372.
Ameni Dhouib, Braham Mezghrani, Giusy Finocchiaro, Rémi Le Borgne, Mathéo Berthet, Bénédicte Daydé-Cazals, Alain Graillot, Xiaohui Ju, Jean-François Berret, Synthesis of Stable Cerium Oxide Nanoparticles Coated with Phosphonic Acid-Based Functional Polymers”, Langmuir, 39(23), 8141 (2023); https://doi.org/10.1021/acs.langmuir.3c00576.
Karthikeyan Kandhasamy and Kumpati Premkumar, Fabrication of Cerium Oxide Nanoparticles with Improved Antibacterial Potential and Antioxidant Activity, Bioscience Biotechnology Research Asia, 20 (2), 487 (2023); https://doi.org/10.13005/bbra/3104.
M. Zandi, M.Fazeli, R.Bigdeli, V.Asgari, R.A.Cohan, R.Bahar, S.Shahmahmoodi, Preparation of Cerium Oxide Nanoparticles and Their Cytotoxicity Evaluation In vitro and In vivo, International Journal of Medical Toxicology and Forensic Medicine, 12(1), 1 (2022);
Yu-Ming Chu, Muhammad Kamran Siddiqui, Sana Javed, Lubna Sherin, Farah Kausa, On Zagreb Type Molecular Descriptors of Ceria Oxide and Their Applications, Journal of Cluster Science, 3(33), 537 (2022); https://doi.org/10.1007/s10876-021-01984-y.
K. Kashyap, F Khan, D Verma, S Agrawal Ch Chandra, P Kumar Dewangan, V Sahu, P R Verma, V K Jain, Biofabrication and structural characterization of cerium oxide nanoparticles, IOP Conference Series: Materials Science and Engineering, 1120, (2020); https://doi.org/10.1088/1757-899X/1120/1/012008.
Thirunavukkarasu Arunachalam, Muthukumaran Karpagasundaram, Nithya Rajarathinam, Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties, Materials Science-Poland, 35(4), 791 (2017); https://doi.org/10.1515/msp-2017-0104.
Kryštof Skrbek, Ondřej Jankovský, Synthesis and Characterization of Ceria Nanoparticles, AIP Conference Proceedings, 2170, 020018-1 (2019); https://doi.org/10.1063/1.5132737.
M. Pourhajibagher, N. Chiniforush, A. Bahador, Antimicrobial action of photoactivated C-Phycocyanin against Enterococcus faecalis biofilms: Attenuation of quorum-sensing system. Photo diagnosis and Photodynamic Therapy. 28, 286 (2019); https://doi.org/10.1016/j.pdpdt.2019.10.013.
GarciaHeras, A.Jimenez, Morales, B. Casal, J.C. Galvan, S. Radzki, M.A. Villegas, Preparation and electrochemical study of cerium–silica sol–gel thin films, Journal of Alloys and Compounds, 380(1–2), 219 (2004); https://doi.org/10.1016/j.jallcom.2004.03.047.
Xuanze Wang, Preparation, synthesis and application of Sol-gel method, Research Gate, 1 (2020)
J. Calvache-Muñoz, FA. Prado, JE. Rodríguez-Páez, Cerium oxide nanoparticles: synthesis, characterization and tentative mechanism of particle formation, Colloids Surf A Physics chemistry and Engineering Aspects, 529, 146 (2017); https://doi.org/10.1016/j.colsurfa.2017.05.059.
Ayad Shalaga Fudala, Waffa Mahdi Salih, Fatin Fadhel Alkazaz, Synthesis different sizes of cerium oxide CeO2 nanoparticles by using different concentrations of precursor via sol–gel method, Materials today proceedings, 49(7), 2786 (2022); https://doi.org/10.1016/j.matpr.2021.09.452.
M Qi, W Li, X Zheng, X Li, Y Sun, Y Wang, et al. Cerium and its oxidant-based nanomaterials for antibacterial applications: a state-of-the-art review. Front Mater, 7, 1 (2020); https://doi.org/10.3389/fmats.2020.00213.
Y.H. Liu, J.C. Zuo, X.F. Ren, L. Yong, Synthesis and character of Cerium oxide (CeO2) nanoparticle by the precipitation method, Metalurgija, 53(4), 463 (2014).
Ruben´ Alvarez-Asencio, ´a Robert W. Corkeryb and Anwar Ahniyaz, Solventless synthesis of cerium oxide nanoparticles and their application in UV protective clear coatings, The Royal Society of Chemistry Advances, 10 (25), 14818 (2020); http://dx.doi.org/10.1039/D0RA01710H.
Malatesh S. Pujar, Shirajahammad M. Hunagund, Vani R. Desai, Shivaprasadgouda Patil , Ashok H. Sidarai, One-step Synthesis and Characterizations of Cerium oxide Nanoparticles in an Ambient Temperature via Co-Precipitation Method, American Institute of Physics, 050026, 1 (2017); https://doi.org/10.1063/1.5028657.
J. Luňáček, O. Životský , P. Janoš, M. Došek, A. Chrobak, M. Maryško, J. Buršík , Y. Jirásková , Structure and magnetic properties of synthesized fine cerium dioxide nanoparticles. Journal of Alloys and Compounds, 753, 167 (2018); https://doi.org/10.1016/j.jallcom.2018.04.115.
Jacinthe Gagnon, Katharina M. Fromm, Toxicity and Protective Effects of Cerium Oxide Nanoparticles (Nanoceria) Depending on Their Preparation Method, Particle Size, Cell Type, and Exposure Route ,European Journal of Inorganic Chemistry, 20(27), 4510 (2015); https://doi.org/10.1002/ejic.201500643.
A. Fotopoulos, J. Arvanitidis, D. Christofilos, K. Papaggelis, M Kalyva, K. Triantafyllidis, D. Niarchos, N. Boukos, G. Basina, V. Tzitzios, One pot synthesis and characterization of ultra fine CeO2 and Cu/CeO2 nanoparticles. Application for low temperature CO oxidation, Journal of Nanoscience Nanotechnology, 11(10), 8593 (2011); https://doi.org/10.1166/jnn.2011.4752.
Oana L. Pop, Amalia Mesaros, Dan C. Vodnar, Ramona Suharoschi, Flaviu Tăbăran, Lidia Magerus, István Sz. Tódor, Zori¸ta Diaconeasa, Adriana Balint, Lelia Ciontea and Carmen Socaciu, Cerium Oxide Nanoparticles and their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials, 10, 1 (2020); https://doi.org/10.3390/nano10081614.
Ghufran K. Ibadi, Ali A. Taha, Selma M. H. Al-Jawad, Preparation and characterization of copper nanoparticles as antibacterial activity , AIP Conference Proceedings, (3002(1), 030005 (2024); https://doi.org/10.1063/5.0206453.
Saliha Ur Rehman, Robina Khan Niazi, M. Zulqurnain, Qaisar Mansoor, Javed Iqbal, Aqsa Arshad, Graphene nanoplatelets/CeO2 nanotiles nanocomposites as effective antibacterial material for multiple drug resistant bacteria, Applied Nanoscience, 12, 1779 (2022); https://doi.org/10.1007/s13204-022-02422-9.
F Abbas, J Iqbal, T Jan, N Badshah, Q Mansoor, M Ismail. Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures. International Journal Miner Metal Matter , 23(1), 10 (2016); https://doi.org/10.1007/s12613-016-1216-1.
G. Killivalavan, A.C.Prabakar, K. C.B. Naidu, B. Sathyaseelan, G. Rameshkumar, D. Sivakumar, K. Senthilnathan, I. Baskaran, E. Manikandan, B. R. Rao. Synthesis and characterization of pure and Cu doped CeO2 nanoparticles: photocatalytic and antibacterial activities evaluation, Biointerface Research in Applied Chemistry, 10(2), 5306 (2020);
Nithya Pandiyan, Balaji Murugesan Jegatheeswaran Sonamuthu, Selvam Samayanan, Sundrarajan Mahalingam, PF6 ionic liquid mediated green synthesis of ceramic SrO/CeO2 nanostructure using Pedalium murex leaf extract and their antioxidant and antibacterial activities, Ceramics International, 45(9), 12138 (2019).
Solans and Margarita Sánchez-Domínguez, Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method, Materials, 9(480), 1 (2016); https://doi.org/10.3390/ma9060480.
Miguel Martí, Belén Frígols, Angel Serrano-Aroca, Antimicrobial Characterization of Advanced Materials for Bioengineering Applications, Journal of Visualized Experiments, 138, 1 (2018); https://doi.org/10.3791/57710.
Mengzhen Zhang, Chao Zhang, Xinyun Zhai, Feng Luo, Yaping Du, Chunhua Yan. Antibacterial mechanism and activity of cerium oxide nanoparticles, Sci China Mater, 62(11), 1727 (2019); https://doi.org/10.1007/s40843-019-9471-7.
Khosro Zamani, Noushin Allah Bakhshi, Faezeh Akhavan, Mahdieh Yousef, Rezvan Golmoradi, Moazzameh Ramezani, Horacio Bach, Shabnam Razavi, Gholam Reza Irajian, Mahyar Gerami, Ali Pakdin Parizi, Majid Tafrihi and Fatemeh Ramezani, Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa, BMC Biotechnology, 21(68) (2021).
Habiba Kadhim Aity, E. Dhahri , Mohammed Rasheed, Optimisation, dielectric properties, and antibacterial efficacy of copper-grafted MgO nanoparticles synthesized via sol-gel method, Ceramics International, https://doi.org/10.1016/j.ceramint.2024.10.324.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Areej Adnan Hateef, Essebti Dhahri, Mohammed Rasheed, Habiba Kadhim, Zahraa Abbas, Noor Hassan
This work is licensed under a Creative Commons Attribution 3.0 Unported License.