Quasi-2D crystals as an electrode material for high energy storage devices

Authors

  • B.A. Lukiyanets Lviv Polytechnic National University, Lviv, Ukraine
  • D.V. Matulka Lviv Polytechnic National University, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.4.750-756

Keywords:

high-energy storage;, quasi-2D crystal, porous material, supercapacitor, energy density

Abstract

The high value of the specific surface area in quasi-2D crystals, with the possibility of a large variation of their properties due to external factors, allows us to consider them as electrode materials for supercapacitors. In order to describe the specific physical properties of such crystals due to the different types of chemical bonds in them, a model is proposed. The electronic spectrum obtained has the structure (discrete levels) + (two-dimensional bands) or (mini-bands) + (two-dimensional bands). A significant relationship between the geometrical, spectral and statistical properties of the quasi-2D crystals has been found by studying the energy density of the accumulation W within the microscopic model. Contrary to existing models, the proposed model shows that under certain conditions there are two or more optimal crystal sizes where the experimentally observed maximum energy density W is realised. The model and its qualitative conclusions should be considered as the result of a microscopic approach to the problem.

References

Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699 (2012); https://doi.org/10.1038/nnano.2012.193.

J. Tian, R. Tice, V. Fei, X. Tran, L Yan,. H. Yang, Wang, Low-symmetry two-dimensional materials for electronic and photonic applications, Nano Today, 11(6), 763 (2016); https://doi.org/10.1016/j.nantod.2016.10.003.

M.B. Wazir, M. Daud, N. Ullah, A. Hai, A. Muhammad, M. Younas, M. Rezakazemi, Synergistic properties of molybdenum disulfide (MoS2) with electro-active materials for high-performance supercapacitors, International Journal of Hydrogen Energy. 44(33), 17470 (2019); https://doi.org/10.1016/j.ijhydene.2019.04.265.

P. Forouzandeh, S.C. Pillai, Two-dimensional (2D) electrode materials for supercapacitors, Materials Today: Proceedings. 41(3), 498 (2020); https://doi.org/10.1016/j.matpr.2020.05.233.

Y. Dong, C. Yan, H. Zhao, Y. Lei, Recent Advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries, Small Struct. 3, 2100221 (2022); https://doi.org/10.1002/sstr.202100221.

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(5696), 666 (2004); https://doi.org/10.1126/science.11028967.

A.D. Ghuge, A.R. Shirode, V.J. Kadam, Graphene: A Comprehensive Review. Current drug targets, Current Drug Targets, 18(6), 724 (2017); https://doi.org/10.2174/1389450117666160709023425.

S.K. Tiwari, S. Sahoo, N. Wang, A. Huczko, Graphene research and their outputs: status and prospect, Journal of Science: Advanced Materials and Devices, 5(1), 10 (2020); https://doi.org/10.1016/j.jsamd.2020.01.006.

B. Fang, D. Chang, Z. Xu, C. Gao, A Review on Graphene fibers: expectations, advances, and prospects. Advanced Materials, 32(5), e1902664, (2020); https://doi.org/10.1002/adma.201902664.

A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E. T. Sayed, Application of graphene in energy storage device – A review, Renewable and sustainable energy reviews, 135, 110026 (2021); https://doi.org/10.1016/j.rser.2020.110026.

M. Sharma, M. Talukdar, P. Deb, High connectivity hierarchical porous network of polyurethane engineered by nanoflakes for proficient oil recovery, Applied Surface Science, 601, 154210, (2022); https://doi.org/10.1016/j.apsusc.2022.154210.

M. Talukdar, S. K. Behera, S. Jana, P. Samal, P. Deb, Band alignment at heterointerface with rapid charge transfer supporting excellent photocatalytic degradation of methylene blue under sunlight, Adv. Mater. Interfaces 6, 2101943 (2022); https://doi.org/10.1002/admi.202101943.

S. Mohanty, P. Deb, Nontrivial band topology coupled thermoelectrics in VSe2/MoSe2 van der Waals magnetic Weyl semimetal, J. Phys.: Condens. Matter 34 (33), 335801 (2022); https://doi.org/10.1088/1361-648X/ac7628.

M.Bora, S. Behera, P.Samal, P. Deb, Magnetic proximity induced valley-contrasting quantum anomalous Hall effect in a graphene - CrBr3 van der Waals heterostructure, Physical Review B. 105, 235422 (2022); https://doi.org/10.1103/PhysRevB.105.235422.

S. Ghosh, S.K. Behera, A. Mishra, C.S. Casari, K.K. Ostrikov, Quantum capacitance of two-dimensional-material-based supercapacitor electrodes, Energy&Fuels. 37(23), 17836 (2023); https://doi.org/10.1021/acs.energyfuels.3c02714.

W.B. Gauster, I.J. Fritz, Pressure and temperature dependences of the elastic constants of compression‐annealed pyrolytic graphite, Journal of Applied Physics, 45(8), 3309 (1974); https://doi.org/10.1063/1.1663777.

A. Nadir, Elastic properties of layered crystals, Physics of the Solid State, 48(4), 663 (2006); https://doi.org/10.1134/S1063783406040081.

S.A. Safran, Stage Ordering in intercalation compounds. In: Solid State Physics (ed.by H.Ehreneich, D.Turnbull) 40, (Academic Press, 1987).

Y. Jung, Y. Zhoub, J.J. Cha, ChemInform Abstract: Intercalation in two-dimensional transition metal chalcogenides, ChemInform, 47(26), 452 (2016); https://doi.org/10.1039/C5QI00242G.

W.A. Little, Possibility of synthesizing an organic superconductor, Phys. Rev. 134 (6A), A1416, (1964); https://doi.org/10.1103/PhysRev.134.A1416.

F.R. Gamble, J.H. Osiecki, M. Cais, R. Pisharody, F.J. Disalvo, T.H. Geballe, Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors, Science, 174 (4008), 493 (1971); https://doi.org/10.1126/science.174.4008.493.

O.V. Balaban, B.Ya. Venhryn, I.I. Grygorchak, S.I. Mudry, Yu.O. Kulyk, B.I. Rachiy, R.P. Lisovskiy, Size effects at ultrasonic treatment of nanoporous Carbonand improved characteristics of supercapacitors on its base, Nanosystems, Nanomaterials, Nanotechnologies, 12(2), 225 (2014).

A.Segura, Layered Indium Selenide under high pressure: A Review, Crystals, 8(5), 206 (2018); https://doi.org/10.3390/cryst8050206.

V. Ptashnyk, I. Bordun, M. Malovanyy, P. Chabecki, T. Pieshkov, The change of structural parameters of nanoporous activated carbons under the influence of ultrasonic radiation. Applied Nanoscience, 10, 4891 (2020); https://doi.org/10.1007/s13204-020-01393-z.

B. A. Lukiyanets, D.V. Matulka, Layered Crystals as Porous Materials: The effect of ultrasonic treatment, Journal of Nano- and Electronic Physics, 13(1) (2021); https://doi.org/10.21272/jnep.13(1).01019.

S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders. Surface Area. Pore Size and Density (The Netherlands: Kluwer, 2004).

D. K. Schroder, Semiconductor material and device characterization (3rd ed.). (John Wiley and Sons. 2006).

S. Luryi, Quantum capacitance devices, Appl. Phys. Lett., 52, 501 (1988); https://doi.org/10.1063/1.99649.

N. Kumar, A calculable quantum capacitance, Current Science, 68, 945 (1995).

J. Lin, Y. Yuan, M. Wang, X. Yang, G. Yang, Theoretical Studies on the Quantum Capacitance of Two-Dimensional Electrode Materials for Supercapacitors, Nanomaterials, 13(13), 1932 (2023); https://doi.org/10.3390/nano13131932.

B. Lukiyanets, D. Matulka, Quantum capacity of quasi-2D crystals, Int. J. Modern Phys. B, 38 No. 2450290 (2024); https://doi.org/10.1142/S0217979224502904.

A. Jeffrey, H.H. Dai, Handbook of mathematical formulas and integrals, fourth ed., (Elsevier, London 2008).

D.E. Jiang, Z. Jin, J. Wu, Oscillation of capacitance inside nanopores, Nano Letters, 11, 5373 (2011); https://doi.org/10.1021/nl202952d.

P.Wu, J.Huang, V. Meunier, B. G. Sumpter, R. Qiao, Complex capacitance scaling in ionic liquids-filled nanopores, ACS Nano, 5 (11), 9044 (2011); https://doi.org/10.1021/nn203260w.

G. Feng, P. Cummings, Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size, Journal of Physical Chemistry Letters, 2(22), 2859 (2011); https://doi.org/10.1021/jz201312e.

S. Kondrat, C.R. Perez, V. Presser, Y. Gogotsi, A. A. Kornysheva, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors, Energy Environ. Sci., 4, 6474 (2012); https://doi.org/10.1039/C2EE03092F.

Published

2024-11-25

How to Cite

Lukiyanets, B., & Matulka, D. (2024). Quasi-2D crystals as an electrode material for high energy storage devices. Physics and Chemistry of Solid State, 25(4), 750–756. https://doi.org/10.15330/pcss.25.4.750-756

Issue

Section

Scientific articles (Physics)