Phonon thermal conductivity of nanograined zirconium diboride: molecular dynamics study
DOI:
https://doi.org/10.15330/pcss.26.4.828-832Keywords:
zirconium diboride, ceramics, nanograined, thermal conductivity, molecular dynamicsAbstract
In this study, the characteristics of phonon transport in single-crystal and nanograined zirconium diboride have been examined using the molecular dynamics method. In the case of single-crystal ZrB2 the anisotropy of the phonon thermal conductivity decreased gradually with increasing temperature. The results demonstrate that a reduction in grain size in nanograined ZrB2 leads to a decline in thermal conductivity. At a grain size of 1 nm, further reduction does not affect the thermal conductivity of the material. The findings are explained in terms of the scattering of heat carriers at the interfaces and the amorphization of the grain structure.
References
W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc., Refractory diborides of zirconium and hafnium 90(5) 1347 (2007); https://doi.org/10.1111/j.1551-2916.2007.01583.x.
Z. Wang, C.Q. Hong, X.H. Zhang, X. Sun, J.C. Han, Mater. Chem. Phys., Microstructure and thermal shock behavior of ZrB2–SiC–graphite composite 113, 338 (2009); https://doi.org/10.1016/j.matchemphys.2008.07.095.
X.H. Zhang, Z. Wang, P. Hu, W.B. Han, C.Q. Hong, Scr. Mater., Mechanical properties and thermal shock resistance of ZrB2–SiC ceramic toughened with graphite flake and SiC whiskers, 61, 809 (2009); https://doi.org/10.1016/j.scriptamat.2009.07.001.
G.J. Zhang, Y.D. Deng, N. Kondo, J.F. Yang, T. Ohji, J. Am. Ceram. Soc., Reactive hot pressing of ZrB2–SiC composites, 83 (9), 2330 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01558.x.
M.M Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, S.J. Causey, J. Eur. Ceram. Soc., Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds 19(13), 2405 (1999); https://doi.org/10.1016/S0955-2219(99)00129-6.
M.M. Opeka, I.G. Talmy, J.A. Zaykoski, J. Mater. Sci., Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience 39 (19), 5887 (2004); https://doi.org/10.1023/b:jmsc.0000041686.21788.77.
M.J. Gasch, D.T. Ellerby, S.M. Johnson, Handbook of ceramic composites, Ultra high temperature ceramic composites 9, 197 (2005); http://doi.org/10.1007/0-387-23986-3_9.
T.H. Squire, J. Marschall, J. Eur. Ceram. Soc., Material property requirements for analysis and design of UHTC components in hypersonic applications 30(11), 2239 (2010); https://doi.org/10.1016/j.jeurceramsoc.2010.01.026.
L. Zhang, D.A Pejakovic´, J. Marschall, M. Gasch, J. Am. Ceram. Soc., Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics 94(8), 2562 (2011); https://doi.org/10.1111/j.1551-2916.2011.04411.x
J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, R. B. Dinwiddie, W. D. Porter, H. Wang, J. Am. Ceram. Soc, Thermophysical properties of ZrB2 and ZrB2-SiC ceramics 91, 1405 (2008); https://doi.org/10.1111/j.1551-2916.2008.02268.x.
M. J. Thompson, W. G. Fahrenholtz, G. E. Hilmas, J. Am. Ceram. Soc, Elevated temperature thermal properties of ZrB2 with carbon additions 95, 1077 (2012); https://doi.org/10.1111/j.1551-2916.2011.05034.x.
J.W. Lawson, M.S. Daw, C.W. Bauschlicher, Jr J. Appl. Phys, Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations 110(8), (2011); http://doi.org/10.1063/1.3647754
H. Kinoshita, S. Otani, S. Kamiyama, H. Amano, I. Akasaki, J. Suda, H. Matsunami, Jpn. J. Appl. Phys., Zirconium Diboride (0001) as an Electrically Conductive Lattice-Matched Substrate for Gallium Nitride 40 (12A), 1280 (2001); https://doi.org/10.1143/JJAP.40.L1280.
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton, Comp Phys Comm , LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales 271, 10817 (2022); https://doi.org/10.1016/j.cpc.2021.108171
J.L Finney, Journal of Computational Physics, A procedure for the construction of Voronoi polyhedra, 32, 137-143 (1979); https://doi.org/10.1016/0021-9991(79)90146-3.
V.V. Kuryliuk, O.A. Korotchenkov, Physica E: Low-Dimensional Systems and Nanostructures, Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites, 88, 228 (2017); https://doi.org/10.1016/j.physe.2017.01.021.
M. Sanjeeva, M. R. Gilbert, S. T. Murphy, Fusion Engineering and Design, Molecular dynamics simulations of the effect of porosity on heat transfer in Li2TiO3 202, 114344 (2024); https://doi.org/10.1016/j.fusengdes.2024.114344.
M. Mansourian-Tabaei, A. Asiaee, B. Hutton-Prager, S. Nouranian, Applied Surface Science, Thermal barrier coatings for cellulosic substrates: A statistically designed molecular dynamics study of the coating formulation effects on thermal conductivity 587, 152879 (2022); https://doi.org/10.1016/j.apsusc.2022.152879.
V.V. Kuryliuk, S.S. Semchuk, K.V. Dubyk, R.M. Chornyi, Nano-Structures and Nano-Objects, Structural features and thermal stability of hollow-core Si nanowires: A molecular dynamic study 29, 8 (2022); https://doi.org/10.1016/j.nanoso.2021.100822.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 V.V. Kuryliuk, O.O. Grygorenko, K.V. Popiuk

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




