Structural properties of ZnO films obtained on SiC/porous-Si by the method of high frequence magnetron sputtering
DOI:
https://doi.org/10.15330/pcss.26.3.699-704Keywords:
ZnO, SiC, XRD, por-Si, SEMAbstract
The morphological and structural properties of ZnO thin films grown by RF magnetron sputtering using a SiC/porous-Si/Si template were studied. The preparation of the ZnO/SiC/porous-Si/Si heterostructure was carried out in two stages: deposition of SiC films by solid-phase epitaxy followed by the deposition of ZnO films by radio frequency magnetron sputtering.
SiC buffer layers on the porous silicon substrate allow for the growth of ZnO films with low residual mechanical stress, measured at -82.3 MPa. A comparative analysis with data from other studies indicates the relatively high quality of the obtained structures.
Keywords. zinc oxide (ZnO), silicon carbide (SiC), porous silicon (por-Si), scanning electron microscopy (SEM), X-ray diffraction (XRD)
References
. M. Aleksanyan, A. Sayunts, G. Shahkhatuni, Z. Simonyan, G. Shahnazaryan, V. Aroutiounian, Chemosensors, Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor, 10(7), 245 (2022); https://doi.org/10.3390/chemosensors10070245.
. B. Li, F. Zhang, W. Liu, X. Chen, Y. Gao, F. Wang, X. Zhang, X. Yan, T. Cheng, Surface and Interfaces, An Ultraviolet Sensor Based on Surface Plasmon Resonance in No-Core Optical Fiber Deposited by Ag and ZnO Film, 31, 102074 (2022); https://doi.org/10.1016/j.surfin.2022.102074.
. S. Nasirian, F. Hadizadeh, Polymer, A Cheap Self-Powered UV-Photodetector Based on Layer-by-Layer Arrangement of Polyaniline and ZnO, 245, 124699 (2022); https://doi.org/10.1016/j.polymer.2022.124699.
. R. Wahab, N. Ahmad, M. Alam, J. Ahmad, Vacuum, Nanorods of ZnO: An Effective Hydrazine Sensor and Their Chemical Properties, 164, 290–296 (2019); https://doi.org/10.1016/j.vacuum.2019.04.036.
. A.M. Ali, F.A. Harraz, A.A. Ismail, S.A. Al-Sayari, H. Algarni, A.G. Al-Sehemi, Thin Solid Films, Synthesis of Amorphous ZnO–SiO2 Nanocomposite with Enhanced Chemical Sensing Properties, 605, 277–282 (2016); https://doi.org/10.1016/j.tsf.2015.11.044.
. B.-R. Wang, R.-Z. Wang, Y.-J. Bai, L.-Y. Liu, Q.-L. Jiang, Journal of Alloys and Compounds, Zinc Oxide Nanonets with Hierarchical Crystalline Nodes: High-Performance Ethanol Sensors Enhanced by Grain Boundaries, 877, 160277 (2021); https://doi.org/10.1016/j.jallcom.2021.160277.
. J.-J. Wu, S.-C. Liu, Journal of Physical Chemistry B, Catalyst-Free Growth and Characterization of ZnO Nanorods, 106(37), 9546–9551 (2002); https://doi.org/10.1021/jp025969j.
. H. Takikawa, K. Kimura, R. Miyano, T. Sakakibara, Thin Solid Films, ZnO Film Formation Using a Steered and Shielded Reactive Vacuum Arc Deposition, 377–378, 74–80 (2000); https://doi.org/10.1016/S0040-6090(00)01387-0.
. A. Fouchet, W. Prellier, B. Mercey, L. Méchin, V.N. Kulkarni, T. Venkatesan, Journal of Applied Physics, Investigation of Laser-Ablated ZnO Thin Films Grown with Zn Metal Target: A Structural Study, 96(6), 3228–3233 (2004); https://doi.org/10.1063/1.1772891.
. H. Hu, X. Huang, C. Deng, X. Chen, Y. Qian, Materials Chemistry and Physics, Hydrothermal Synthesis of ZnO Nanowires and Nanobelts on a Large Scale, 106(1), 58–62 (2007); https://doi.org/10.1016/j.matchemphys.2007.05.016.
. S.-Y. Ting, P.-J. Chen, H.-C. Wang, C.-H. Liao, W.-M. Chang, Y.-P. Hsieh, C.C. Yang, Journal of Nanomaterials, Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE, 2012, 929278 (2012); https://doi.org/10.1155/2012/929278.
. Q.P. Wang, D.H. Zhang, Z.Y. Xue, X.T. Hao, Applied Surface Science, Violet Luminescence Emitted from ZnO Films Deposited on Si Substrate by Rf Magnetron Sputtering, 201(1), 123–128 (2002); https://doi.org/10.1016/S0169-4332(02)00570-6.
. V. Kidalov, A. Dyadenchuk, Y. Bacherikov, A. Zhuk, T. Gorbanuk, I. Rogozin, Turkish Journal of Physics, Structural and Optical Properties of ZnO Films Obtained on Mesoporous Si Substrates by the Method of HF Magnetron Sputtering, 44(1), 57–66 (2020); https://doi.org/10.3906/fiz-1909-10.
. I. Ozen, M.A. Gülgün, Advances in Science and Technology, Residual Stress Relaxation and Microstructure in ZnO Thin Films, 45, 1316–1321 (2006); https://doi.org/10.4028/www.scientific.net/AST.45.1316.
. Z.D. Sha, J. Wang, Z.C. Chen, A.J. Chen, Z.Y. Zhou, X.M. Wu, L.J. Zhuge, Physica E: Low-dimensional Systems and Nanostructures, Initial Study on the Structure and Optical Properties of ZnO Film on Si(111) Substrate with a SiC Buffer Layer, 33(1), 263–267 (2006); https://doi.org/10.1016/j.physe.2006.03.138.
. Ü. Akın, A. Houimi, B. Gezgin, Y. Gündoğdu, S. Kılıç, B. Mercimek, A. Berber, S.Y. Gezgin, Journal of the Korean Physical Society, The Electrical Properties of ZnO/Si Heterojunction Diode Depending on Thin Film Thickness, 81(2), 139–149 (2022); https://doi.org/10.1007/s40042-022-00499-7.
. M.P. Gönüllü, D.D. Çakıl, C. Çetinkaya, Gazi University Journal of Science - Part C: Design and Technology, The Attitude of ZnO/Al2O3 Film Produced by Ultrasonic Spray Pyrolysis Under Thermal Annealing, 10(4), 1026–1036 (2022); https://doi.org/10.29109/gujsc.1137863.
. H.-J. Ko, T. Yao, Y. Chen, S.-K. Hong, Journal of Applied Physics, Investigation of ZnO Epilayers Grown under Various Zn/O Ratios by Plasma-Assisted Molecular-Beam Epitaxy, 92(8), 4354–4360 (2002); https://doi.org/10.1063/1.1509103.
. Y. Zhang, G. Du, B. Zhang, Y. Cui, H. Zhu, Y. Chang, Semiconductor Science and Technology, Properties of ZnO Thin Films Grown on Si Substrates by MOCVD and ZnO/Si Heterojunctions, 20(11), 1132 (2005); https://doi.org/10.1088/0268-1242/20/11/006.
. X. Xiaopeng, C. Xiaoqing, S. Lijie, M. Shun, F. Zhuxi, Journal of Semiconductors, Photoelectric Conversion Characteristics of ZnO/SiC/Si Heterojunctions, 31(10), 103002 (2010); https://doi.org/10.1088/1674-4926/31/10/103002.
. V. Kidalov, A. Dyadenchuk, C. Abbasova, V. Baturin, O. Karpenko, O. Gudimenko, 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), Synthesis and Characterization of SiC-Based Thin Film Heterostructures, IEEE, 2022, pp. 01–04; https://doi.org/10.1109/NAP55339.2022.9934602.
. V.V. Kidalov, A.S. Revenko, D. Duleba, R.A. Redko, ECS Journal of Solid State Science and Technology, Synthesis, Properties, and Application of Nanostructured ZnO Materials, 13(11), 114003 (2024); https://doi.org/10.1149/2162-8777/ad89f8.
. C.J. Raj, R.K. Joshi, K.B.R. Varma, Crystal Research and Technology, Synthesis from Zinc Oxalate, Growth Mechanism and Optical Properties of ZnO Nano/Micro Structures, 46(11), 1181–1188 (2011); https://doi.org/10.1002/crat.201100201.
. E.F. Kaelble, Handbook of X-Rays: For Diffraction, Emission, Absorption, and Microscopy, McGraw-Hill, New York (1967).
. A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, Solid State Sciences, X-Ray Analysis of ZnO Nanoparticles by Williamson–Hall and Size–Strain Plot Methods, 13(1), 251–256 (2011); https://doi.org/10.1016/j.solidstatesciences.2010.11.024.
. A. Singh, H.L. Vishwakarma, Materials Science-Poland, Study of Structural, Morphological, Optical and Electroluminescent Properties of Undoped ZnO Nanorods Grown by a Simple Chemical Precipitation, 33, 751 (2015); https://doi.org/10.1515/msp-2015-0112.
. S.A. Studenikin, N. Golego, M. Cocivera, Journal of Applied Physics, Fabrication of Green and Orange Photoluminescent, Undoped ZnO Films Using Spray Pyrolysis, 84(4), 2287–2294 (1998); https://doi.org/10.1063/1.368295.
. D. Dimova-Malinovska, H. Nichev, O. Angelov, Physica Status Solidi C, Correlation between the Stress in ZnO Thin Films and the Urbach Band Tail Width, 5(10), 3353–3357 (2008); https://doi.org/10.1002/pssc.200778886.
. M. Mazhdi, P. Hossein Khani, International Journal of Nano Dimensions, Structural Characterization of ZnO and ZnO Nanoparticles Prepared by Reverse Micelle Method, 2(4), 233–240 (2012); https://doi.org/10.7508/ijnd.2011.04.004.
. M.S. Kim, K.G. Yim, J.-Y. Leem, S. Kim, G. Nam, D.-Y. Lee, J.S. Kim, J.S. Kim, Journal of the Korean Physical Society, Thickness Dependence of Properties of ZnO Thin Films on Porous Silicon Grown by Plasma-Assisted Molecular Beam Epitaxy, 59(3), 2354–2361 (2011); https://doi.org/10.3938/jkps.59.2354.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 A.S. Revenko, V.V. Kidalov, O.I. Gudymenko

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




