Impact of Thermal Reduction in an Hydrogen Stream on the Composition of Ferrocene Degradation Products
DOI:
https://doi.org/10.15330/pcss.26.4.912-922Keywords:
ferrocene, thermal reduction, gas-phase, solid phase products, iron carbide nanoparticles, iron, XRD, FMRAbstract
The gas-phase and solid products formed during the thermal reduction of ferrocene in a hydrogen flow in the temperature range of 373–1073 K were investigated. The identified gas-phase products include methane, ethane, propane, butane, n-pentane, n-hexane, and cyclopentadiene, while the solid products consist of nanosized particles of iron and carbon. The temperature dependences of the concentrations of the detected gas-phase products were obtained. It was shown that the formation of iron nanoparticles during the thermal decomposition of ferrocene in a hydrogen atmosphere proceeds with the simultaneous formation of metallic iron, iron carbide, and amorphous carbon. Their relative contents in the solid residue strongly depend on the reaction conditions. The nucleation process under hydrogen atmospheres occurs with the formation of smaller nuclei, which promotes a more intense formation and growth of nanoparticles. The composition of the solid residues can be controlled by varying the experimental parameters, such as reaction time, temperature, and iron precursor concentration. The magnetic properties of the resulting solid products may also be tuned through modulation of particle structure and phase composition.
References
H. Werner, At least 60 years of ferrocene: the discovery and rediscovery of the sandwich complexes. Angewandte Chemie. 51 (25), 6052 (2012); https://doi.org/10.1002/anie.201201598.
E.S. Phillips, Ferrocenes. compounds, properties and applications. Chemical engineering methods and technology (Nova Science Publishers, 2011).
S. Islam and F. Wang, A comparative study of energetics of ferrocenium and ferrocene, Preprints, 1, (2018); https://doi.org/10.20944/preprints201808.0166.
Ya-Ru Deng, Ya-Fei Li, Hao Yang, Yan-Ru Fan, Yu Huang, Synthesis, DNA binding of bis-naphthyl ferrocene derivatives and the application as new electroactive indicators for DNA biosensor, Journal of Inorganic Biochemistry, 257, (112615), (2024); https://doi.org/10.1016/j.jinorgbio.2024.112615.
Woojung Lee, Liang Li, María Camarasa-Gómez, Daniel Hernangómez-Pérez, Xavier Roy, Ferdinand Evers, Michael S. Inkpen, Latha Venkataraman, Photooxidation driven formation of Fe-Au linked ferrocene-based single-molecule junctions, Nature Communications, , 15, 1, (2024); https://doi.org/10.1038/s41467-024-45707-z.
Y.Y. Zhuk, N.G. Strizhakova, & Y.A. Maletin, Ferrocene-containing ligands in the self-assembly of trinuclear μ3-oxocentered carboxylate complexes of chromium (III, III, III)carboxylate complexes of chromium(III, III, III). Theor Exp Chem, 36, 215 (2000); https://doi.org/10.1007/BF02522754.
Abeera Hassan, Hafiza Komal Zafar, Ayman Nafady, Manzar Sohail, Synthesis and characterization of novel ferrocene/PbS nanocomposite material by low-temperature co-precipitation method, Inorganic Chemistry Communications, 162, 112194 (2024); https://doi.org/10.1016/j.inoche.2024.112194.
Umair Rauf, Ghulam Shabir, Saba Bukhari, Fernando Albericio, Aamer Saeed, Contemporary Developments in Ferrocene Chemistry: Physical, Chemical, Biological and Industrial Aspects, Molecules, 28(15), 5765 (2023); https://doi.org/10.3390/molecules28155765.
Mingli Xu, Chen Wu, Fengxue Zhang, Yanhui Zhang, Jiaxin Ren, Chengyi Zhang, Xuanze Wang, Li Xiao, Olivier Fontaine, Jiangfeng Qian, Potential regulation strategy enables ferrocene as p-type redox mediator for direct regeneration of spent LiFePO4 cathode, Energy Storage Materials, 71, 103611 (2024); https://doi.org/10.1016/j.ensm.2024.103611.
F.A. Larik, A. Saeed, T.A. Fattah, U. Muqadar, P.A. Channar, Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives, Appl. Organomet. Chem. 31, 3664 (2017); https://doi.org/10.1002/aoc.3664.
Noha A. Elessawy, Mohamed Elnouby, M.H. Gouda, Hesham A. Hamad, Nahla A. Taha, M. Gouda, Mohamed S. Mohy Eldin. Ciprofloxacin removal using magnetic fullerene nanocomposite obtained from sustainable PET bottle wastes: Adsorption process optimization, kinetics, isotherm, regeneration and recycling studies. Chemosphere, 239, 124728 (2020); https://doi.org/10.1016/j.chemosphere.2019.124728.
Praswasti PDK Wulan, Togi Elyazeer Sinaga. The effect of iron-carbon ratio and on carbon nanotube synthesis using camphor and ferrocene as carbon sources in the gauze reactor. South African J. of Chem. Engineering, 36, 17 (2021); https://doi.org/10.1016/j.sajce.2020.12.001.
Cameron H.W. Kelly, Matthias Lein. Choosing the right precursor for thermal decomposition solution-phase synthesis of iron nanoparticles: tunable dissociation energies of ferrocene derivatives. Physical Chemistry Chemical Physics, 18 (47), 32448(2016); https://doi.org/10.1039/C6CP06921E.
Amlan Rooj, Madhusudan Roy, Ashis Bhattacharjee. Thermal Decomposition Reaction of Ferrocene in the Presence of Oxalic Acid. International Journal of Chemical Kinetics, 49 (5), 319 (2017); https://doi.org/10.1002/kin.21077.
Bo-Yu Chen, Chong-Chi Chi, Wen-Kuang Hsu, Hao Ouyang. Synthesis of SiC/SiO2 core–shell nanowires with good optical properties on Ni/SiO2/Si substrate via ferrocene pyrolysis at low temperature. Scientific Reports 11 (1), (2021); https://doi.org/10.1038/s41598-020-80580-y.
Aqeel Hussain, Kirill Murashko, Alexey P. Tsapenko, Er-Xiong Ding, Esko I. Kauppinen, Anna Lähde. Single-Step Fabrication of Iron Single-Walled Carbon Nanotube Film from Ferrocene as a Conductive-Electrocatalyst Interlayer in Lithium–Sulfur Batteries. The Journal of Physical Chemistry C, 127 (49), 23577 (2023); https://doi.org/10.1021/acs.jpcc.3c05777.
V.V. Ivanovskaya, A.L. Ivanovskii, Quantum-chemical modelling of composite nanomaterials: Iron clusters Fen (n = 6, 15, 19) in carbon nanotubes. Theor Exp Chem, 42, 239 (2006); https://doi.org/10.1007/s11237-006-0046-z.
Matthys J. Loedolff, Rebecca O. Fuller, Gareth L. Nealon, Martin Saunders Mark A. Spackman and George A. Koutsantonis. Solution-phase decomposition of ferrocene into wüstite-iron oxide core–shell nanoparticles. Dalton Trans., 51, 1603 (2022); https://doi.org/10.1039/D1DT03222D.
M. Ivantsov, K. Krysanova, A. Grabchak, & M. Kulikova, Hydrogenation of CO in the Presence of Fe-Containing Materials Based on Carbon Supports. Eurasian Chemico-Technological Journal, 24(4), 303 (2022); https://doi.org/10.18321/ectj1474.
Ashis Bhattacharjee, Amlan Rooj, Debasis Roy, and Madhusudan Roy. Thermal Decomposition Study of Ferrocene [(C5H5)2Fe]. Hindawi Publishing CorporationJournal of Experimental Physics, 513268 (2014); http://dx.doi.org/10.1155/2014/513268.
Sani Kundu, Toton Sarkar, Gurupada Ghorai, Pratap K. Sahoo, Ahmad Aziz Al-Ahmadi, Ahmad Alghamdi, Ashis Bhattacharjee, Reaction Atmosphere-Controlled Thermal Conversion of Ferrocene to Hematite and Cementite Nanomaterials-Structural and Spectroscopic Investigations, ACS Omega, 9 (21), 22607 (2024); https://doi.org/10.1021/acsomega.3c10332.
Sebastian Grimm, Patrick Hemberger, Tina Kasper, Burak Atakan. Mechanism and Kinetics of the Thermal Decomposition of Fe(C5H5)2 in Inert and Reductive Atmosphere: A Synchrotron‐Assisted Investigation in A Microreactor. Advanced Materials Interfaces, 9 (22), (2022); https://doi.org/10.1002/admi.202200192.
Kazunori Kuwana, Kozo Saito. Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes. Proceedings of the Combustion Institute, 31(2), 1857 (2007); https://doi.org/10.1016/j.proci.2006.07.097.
https://www.hiden.de/wp-content/uploads/pdf/CATLAB.pdf
A.I. Rustamova, Z.G. Gurbanov, Z.M. Mammadova, et al., Heteronuclear Fe-Mn Cyclopentadienyl Complexes Supported on Boehmite. Thermochemistry and Thermodynamics of their Decomposition, Chemical Problems, 26(3), 251 (2023); https://doi.org/10.32737/2221-8688-2023-3-251-261.
A.I. Rustamova, Z.M. Mammadova, S.N. Osmanova, et al., Thermal stability of cyclopentadienyliron-manganese(cobalt)-carbonyl halides adsorbed on alumina and thermodynamics of their decomposition. Ukrainian Conference with International Participation, Chemistry, Physics and Technology of Surface, Book of abstracts, 11-12 October, 2023, Kyiv, Ukraine. https://drive.google. com/file/d/1nBmxAKF9UJFWeEocCme5DTWkvW¬50Jk8T/view.
A. Rustamova, R. Muradxanov, S. Osmanova, F. Pashayeva, A. Mammadov, D. Tagiyev, & E. Ismailov, Heteronuclear Fe-Mn Cyclopentadienyl Complexes Supported on Boehmite. Thermochemistry and Thermodynamics of their Decomposition. Eurasian Chemico-Technological Journal, 26(3), 161 (2024); https://doi.org/10.18321/ectj1639.
Brief Handbook of Physical and Chemical Quantities, edited by K.P. Mishchenko and A.A. Ravdel, L.: Chemistry, 1974 – 200 pp. https://studylib.ru/doc/6242384/kratkij-spravochnik-fiziko-himicheskih-velichin.-pod-red.
William M. Haynes; David R. Lide; Thomas J. Bruno, eds. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data (2016-2017, 97th ed.). Boca Raton, Florida: CRC Press. (2016); https://tech.chemistrydocs.com/Books/Organic/Basic-Organic-Chemistry-for-the-Life-Sciences-by-Hrvoj-Van%C4%8Dik.pdf.
Hafsa Khurshid, Yassir A. Abdu, Eamonn Devlin, Bashar Afif Issab and George C. Hadjipanayis. Chemically synthesized nanoparticles of iron and iron-carbides, RSC Adv, 10(48), 28958 (2020); https://doi.org/10.1039/d0ra02996c.
C.T. Hseih, W.L. Huang, J.T. Lue, The change from paramagnetic resonance to ferromagnetic resonance for iron nanoparticles made by the sol–gel method. J. of Physics and Chemistry of Solids, 63, 733 (2002); https://doi.org/10.1016/S0022-3697(01)00222-0.
K. Chalapat, JVI Timonen, M. Huuppola, L. Koponen, C. Johans, RHA Ras, O. Ikkala, MA Oksanen, Seppälä, E & GS Paraoanu, Ferromagnetic resonance in ε-Co magnetic composites', Nanotechnology, 25(48), 485707 (2014); https://doi.org/10.1088/0957-4484/25/48/485707.
F.F Orudzhev, N.M.-R Alikhanov, S.M. Ramazanov, D.S. Sobola, R.K. Murtazali, E.H.Ismailov, R.D. Gasimov, A.S. Aliev, Ş. Ţălu, Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3. Molecules. 27(20), 7029 (2022); https://doi.org/10.3390/molecules27207029.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 A.I. Rustamova, L.V. Huseynova, S.N. Osmanova, V.M. Ahmadov, E.H. Ismailov

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




