Hopping conductivity in lithium-iron spinel doped with La,Y

Authors

  • A.V. Vakalyuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • V.M. Vakalyuk Ivano-Frankivsk National Technical University of Oil and Gas Ivano-Frankivsk, Ukraine
  • O.P. Pakhovskyi Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • I.M. Hasiuk Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.1.53-57

Keywords:

impedance spectroscopy, spinel, Arrhenius curves, hopping mechanism of conductivity, Fermi level

Abstract

The temperature-frequency dependences of the electrical characteristics of Li2Fe2,5-xMexO4 (Ме=La;Y, x=0;0.01;0.03;0.05) spinels synthesized by the «sol-gel» autocombustion technology  were obtained by the method of impedance spectroscopy in the temperature  range  of  293-473 K.

Based on their analysis, the main mechanisms of conductivity of these materials in the studied temperature range were identified: hopping and activation. It was shown that at low temperatures the hopping mechanism of conductivity dominates. The main parameters of hopping conductivity have been determined. The effect of doping lithium-iron spinels with rare-earth metal impurities on them has been investigated.

Методом імпедансної спектроскопії отримані температурно-частотні залежності електричних характеристик Li2Fe2,5-xМеxO4 (Ме=La;Y, x=0;0,01;0,03;0,05) шпінелей, синтезованих за технологією «золь-гель» автоспалювання, в інтервалі температур 293-473К. На основі їх аналізу виявлені основні механізми провідності цих матеріалів в досліджуваному інтервалі температур: стрибковий та активаційний. Показано, що при низьких температурах домінує стрибковий механізм провідності. Встановлено основні параметри стрибкової провідності. Досліджено вплив на них легування літій-залізних шпінелей доміщками рідкісноземельних металів.

 

References

I.M. Gasyuk, I.M. Budzulyak, S.A. Galiguzova, V.V. Uhorchuk, L.S. Kaikan, Cathode materials of lithium current sources based on Li0,5Fe2,5O4, Nanosystems, Nanomaterials, Nanotechnologies, 4(3), 613 (2006).

H.M. Widatallah, C. Jonson, F.J. Berry, E.A. Moore, E. Jartych, Synthesis, structural andтьmagnetic characterization of aluminium-substituted Li0,5Fe2,5O4 spinel lithium ferrite, United Nations Educational Scientific and Cultural Organization and International Atonomic Energy Agency. IC., 159 (2002).

E. Wolska, J. Darul, W. Nowicki, P. Piszora, C. Baehtz, M. Knapp, Order-disorder phase transition in the spinel lithium ferrite, HASYLAB Jahresbericht, 317 (2004).

E. Wolska, J. Darul, W. Nowicki, P. Piszora, C. Baehtz, M. Knapp, High temperature X-ray powder diffraction studies on the LiFe5O8-LiAl5O8 spinel solid solutions, HASYLAB Jahresbericht, 357 (2005).

Arjunwadkar P.R., Patil R.R., Kulkarni D.K., Effect of sintering temperature on the structural, electrical and magnetic properties of Li0.5Al1.0Fe2O4 ferrite prepared by combustion method, J. Alloys and Compounds 463, 403 (2008).

Ostafiychuk B.K., Gasyuk I.M., Moklyak V.V., Deputat B.Ya., Yaremiy I.P., Ordering of the structure of solid solutions of lithium-iron and lithium-aluminum spinel, Metallophysics and advanced technologies, 32(2), 209 (2010).

I.M. Gasyuk, A.V. Vakalyuk, V.M. Vakalyuk. Thermal dependency of Li+-ion conductivity in Li2O-Fe2O3-Al2O3 ceramics, Materials Today: Proceedings, 35(4), 567 (2021); https://doi.org/10.1016/j.matpr.2019.10.103.

M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structuraland magnetic featuresof nanocrystalline spinel ferrites prepared via sol gel route, Journal of Magnetism and Magnetic Materials (2018),doi: https://doi.org/10.1016/j.jmmm.2018.03.069

M. Yousaf, M.N. Akhtar, B. Wang, A. Noor, Preparations, optical, structural,

conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites, Ceramics International (2019), doi: https://doi.org/10.1016/j.ceramint.2019.10.149.

Majid Niaz Akhtar, Muhammad Yousaf , Yuzheng Lu, Muhammad Azhar Khan, Ali Sarosh, Mina Arshad, Misbah Niamat, Muhammad Farhan, Ayyaz Ahmad, Muhammad Umar Khallidoon, Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices, Ceramics International 47, 11878 (2021); https://doi.org/10.1016/j.ceramint.2021.01.028.

Vakalyuk A.V., Vakalyuk V.M. et al. Impedance method for studying the electrical properties of lithium-iron spinel doped with rare earth metals, Monographic series «European Science». Book 32. Part 2. 166 (2024); ISBN 978-3-98924-059-9, https://doi.org/10.30890/2709-2313.2024-3 2-02.

Vakalyuk A.V., Vakalyuk V.M., Impedance method for studying the effect of rare earth element (La and Y) impurities on the polycrystalline structure of lithium-iron spinel. Abstracts of VII International Scientific and Practical Conference Prague, Czech Republic February 17-19, 2025, 170-173; https://eu-conf.com/en/events/present-and-future-priority-areas-of-research-in-scientific-and-educational-activities/

M. Abdullah Dar, Khalid Mujasam Batoo, Vivek Verma, W.A. Siddiqui, R.K. Kotnala, Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant, J. Alloys and Compounds 493, 553 (2010); https://doi.org/10.1016/j.jallcom.2009.12.154.

N.F. Mott, E.A. Davis Electronic processes in non-crystalline materials, Clarendon press, Oxford, (1971).

V.T. Avanesyan, V.A. Potachev, E.L. Baranova, Hopping conductivity in polycrystalline photoconductive layers Pb3O4, Physics and technology of semiconductors, 43(11), 1538 (2009); https://doi.org/10.1134/S1063782609110165.

B.K. Ostafiychuk, I.M. Gasyuk, L.S. Kaikan, V.V. Ugorchuk, P.O. Sulym, P.P. Yakubovsky, Hopping conductivity in magnesium-substituted lithium-iron spinels, Eastern European Journal of Advanced Technologies, 6/5(48), 18 (2010); https://doi.org/10.15587/1729-4061.2010.3308.

Downloads

Published

2025-03-04

How to Cite

Vakalyuk, A., Vakalyuk, V., Pakhovskyi, O., & Hasiuk, I. (2025). Hopping conductivity in lithium-iron spinel doped with La,Y. Physics and Chemistry of Solid State, 26(1), 53–57. https://doi.org/10.15330/pcss.26.1.53-57

Issue

Section

Scientific articles (Physics)