Analysis of methods for detecting opaque defects on the surface of modulation disks (review)

Authors

  • D. Yu. Manko Institute for information recording, NAS of Ukraine, Kyiv, Ukraine
  • Ie. V. Beliak Institute for information recording, NAS of Ukraine, Kyiv, Ukraine
  • O. M. Butok Institute for information recording, NAS of Ukraine, Kyiv, Ukraine
  • Yu. I. Chehil Institute for information recording, NAS of Ukraine, Kyiv, Ukraine
  • A. V. Pankratova Institute for information recording, NAS of Ukraine, Kyiv, Ukraine
  • A. A. Kryuchyn Institute for information recording, NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.2.358-369

Keywords:

modulation disks, opaque defects removal, laser ablation, heat conduction model

Abstract

The study explores modulation disks as high-precision optical sensors for measuring angular positions and rotational velocities, crucial for industrial and military use. Laser ablation is employed to refine microstructure formation, ensuring precise etching, defect elimination, and chromium residue removal. A classification of opaque defects on disk substrates identifies key causes and mitigation challenges, including risks of damaging adjacent structures during ablation. A mathematical model based on the heat conduction equation in cylindrical coordinates describes defect behavior under laser irradiation, optimizing ablation depth and minimizing thermal damage. Numerical simulations reveal thermal behavior, temperature distribution, and material removal dynamics, guiding laser parameter optimization. Experiments using a pulsed nitrogen laser (337.1 nm, 20 ns pulse) demonstrated selective chromium defect removal (5–50 µm) with minimal substrate damage. Non-metallic contaminants remained unaffected, confirming method selectivity. Microimages of the sample surface revealed the successful elimination of chromium residues and thin residual metal films under optimal laser conditions.

References

M. Hossain, J. K. Rakshit, & M. Pal Singh, Numerical Analysis of all-optical silicon microring resonator-based cyclic redundancy check encoder, Journal of Nanophotonics, 16 (03), 036007-1 (2022); https://doi.org/10.1117/1.jnp.16.036007.

Y. Liu, W. Gu, Z. Mei, D. Sun, Efficient FPGA-based LDPC encoder implementation for Optical Communication Systems, 2023 21st International Conference on Optical Communications and Networks (ICOCN), 1–3 (2023); https://doi.org/10.1109/icocn 59242.2023.10236181.

C. Patruno, V. Renò, M. Nitti, G. Pernisco, N. Mosca, Optical encoder neural network: A CNN-based optical encoder for robot localization, Optical Engineering, 62 (04), 041402-1 (2022); https://doi.org/10.1117/1.oe.62.4.041402.

R. K. Megalingam, S. A. Anil, J. M. Varghese, FPGA based navigation platform for fixed path navigation with distance estimation using rotation encoder, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 3134 (2016); https://doi.org/10.1109/iceeot.2016.7755279.

B. Ali, R. N. Sadekov, V. V. Tsodokova, A review of navigation algorithms for unmanned aerial vehicles based on Computer Vision Systems, Gyroscopy and Navigation, 13 (4), 241 (2022); https://doi.org/10.1134/s2075108722040022.

I.V. Kosyak, D.Yu. Manko, Ie.V. Beliak, A.A. Kryuchyn, Methodology for transforming code sequences according to the modulation disk coordinate system, Electronic Modeling, 46 (5), 35 (2024); https://doi.org/10.15407/emodel.46.05.035.

K. Eberhardt, S. Esser, H. Haider, Abstract feature codes: The building blocks of the implicit learning system, Journal of Experimental Psychology: Human Perception and Performance, 43 (7), 1275 (2017); https://doi.org/10.1037/xhp0000380.

P.K. Panigrahi, S.K. Bisoy, Localization strategies for autonomous mobile robots: a review, J. King Saud Univ. - Comput. Inf. Sci., 34 (8B), 6019 (2021); https://doi.org/10.1016/j.jksuci.2021.02.015.

J. Seybold, A. Bülau, K. P. Fritz, A. Frank, C. Scherjon, J. Burghartz, A. Zimmermann. Miniaturized optical encoder with micro-structured encoder disc, Applied Sciences, 9 (3), 452 (2019); https://doi.org/10.3390/app9030452.

S. Liu, H. C. Zhang, L. Zhang, Q. L. Yang, Q. Xu, J. Gu, Y. Yang, X. Y. Zhou, J. Han, Q. Cheng, W. Zhang, T. J. Cui, Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Applied Materials & Interfaces, 9 (25), 21503 (2017); https://doi.org/10.1021/acsami.7b02789.

S. Liu, T. J. Cui, Flexible controls of terahertz waves using coding and programmable metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 23 (4), 1 (2017); https://doi.org/10.1109/jstqe.2016.2599273.

M. Hossain, J. K. Rakshit, M. Pal Singh, Numerical Analysis of all-optical silicon micro-ring resonator-based cyclic redundancy check encoder. Journal of Nanophotonics, 16 (03). 036007-1 (2022); https://doi.org/10.1117/1.jnp.16.036007.

R. K. Megalingam, S. A. Anil, J. M. Varghese, FPGA based navigation platform for fixed path navigation with distance estimation using rotation encoder, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 3134–3138. https://doi.org/10.1109/iceeot.2016.7755279.

B. Ali, R. N. Sadekov, V. V. Tsodokova, A review of navigation algorithms for unmanned aerial vehicles based on Computer Vision Systems. Gyroscopy and Navigation, 13(4), 241 (2022); https://doi.org/10.1134/s2075108722040022.

M. Darnon, Plasma etching in Microelectronics, Plasma Etching Processes for CMOS Devices Realization 23 (2017); https://doi.org/10.1016/b978-1-78548-096-6.50002-x.

F. Tian, T. Wang, X. Lu, Endpoint detection based on optical method in chemical mechanical polishing, Micromachines, 14 (11), 2053 (2023); https://doi.org/10.3390/mi14112053.

T. Ding, Y. Xie, Z. Shen, X. Cheng, Z. Wang, Ultrasonic cleaning optimization research for ultrasmooth optical substrate with artificial micron/submicron silica spheres, Optical Engineering, 53 (12), 122514 (2014); https://doi.org/10.1117/1.oe.53.12.122514.

B. Tang, K. Sato, Advanced surfactant-modified wet anisotropic etching (Microelectromechanical Systems and Devices, 2012); https://doi.org/10.5772/26901.

Y. Zhou, L. Zhao, Y. Tang, Q. Deng, S. Hu, Dimensional Metrology of micro structure based on modulation depth in Scanning Broadband Light Interferometry, Applied Optical Metrology II, 10373(38), 103730G-1 (2017); https://doi.org/10.1117/12.2280001.

M. R. Schmidt, P. Flanigan, D. Thibault, Photomask repair using an advanced laser-based repair system (MARS2), SPIE Proceedings, 4889, 1023 (2002); https://doi.org/10.1117/12.467505.

T.E. Robinson, J.Le Claire, Advanced Laser repair of EUV photomasks. Photomask Japan 2019: XXVI Symposium on Photomask and Next-Generation Lithography Mask Technology, 10; 111780K01 (2019); https://doi.org/10.1117/12.2534759.

T.E. Robinson, J.Le Claire, Update on the performance of photomask repair and clean with DUV femtosecond laser processes, Photomask Japan 2018: XXV Symposium on Photomask and Next-Generation Lithography Mask Technology, 10807091 (2018); https://doi.org/10.1117/12.2325009.

D. Stonyte, V. Jukna, D. Paipulas, Direct laser ablation of glasses with low surface roughness using femtosecond UV laser pulses, Journal of Laser Micro/Nanoengineering, 17 (2), 121 (2022); https://doi.org/10.2961/jlmn.2022.02.2008.

B. Kim, H. K. Nam, Y. J. Kim, S. W. Kim, Lift-off ablation of metal thin films for micropatterning using ultrashort laser pulses, Metals, 11 (10), 1586 (2021). https://doi.org/10.3390/met11101586.

S. Brose, Stand-alone EUV setups for photomask related inspection tasks, Photomask Japan 2022: XXVIII Symposium on Photomask and Next-Generation Lithography Mask Technology, 49 (2022); https://doi.org/10.1117/12.2656141.

T. Robinson, D. Yi, R. White, R. Bozak, M. Archuletta, D. Lee, Nanomachining of non-orthogonal mask patterns. SPIE Proceedings, 77481H1 (2010); https://doi.org/10.1117/12.865198.

Published

2025-06-24

How to Cite

Manko, D. Y., Beliak, I. V., Butok, O. M., Chehil, Y. I., Pankratova, A. V., & Kryuchyn, A. A. (2025). Analysis of methods for detecting opaque defects on the surface of modulation disks (review). Physics and Chemistry of Solid State, 26(2), 358–369. https://doi.org/10.15330/pcss.26.2.358-369

Issue

Section

Review